The holomorphic functional calculus for sectorial unbounded operators is an extension of the classical Dunford calculus for bounded operators. The interest in this calculus is motivated by the Kato square root problem and applications to the operator-sum method introduced by DaPrato and Grisvard to treat evolution equations on a finite interval. In this thesis we develop the holomorphic functional calculus for multisectorial and asymptotically bisectorial operators. We obtain versions of closed-sum theorems that allow to deduce maximal regularity for first and second order Cauchy problems both on the line and for the periodic problem. The results are then applied to prove existence and uniqueness of non-linear evolution equations.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : ISD LLC, Bristol, CT, Etats-Unis
paperback. Etat : New. N° de réf. du vendeur 367481
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 45908102-n
Quantité disponible : 2 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. The holomorphic functional calculus for sectorial unbounded operators is an extension of the classical Dunford calculus for bounded operators. The interest in this calculus is motivated by the Kato square root problem and applications to the operator-sum method introduced by DaPrato and Grisvard to treat evolution equations on a finite interval. In this thesis we develop the holomorphic functional calculus for multisectorial and asymptotically bisectorial operators. We obtain versions of closed-sum theorems that allow to deduce maximal regularity for first and second order Cauchy problems both on the line and for the periodic problem. The results are then applied to prove existence and uniqueness of non-linear evolution equations. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783832508623
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 45908102
Quantité disponible : 2 disponible(s)
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Paperback. Etat : new. Paperback. The holomorphic functional calculus for sectorial unbounded operators is an extension of the classical Dunford calculus for bounded operators. The interest in this calculus is motivated by the Kato square root problem and applications to the operator-sum method introduced by DaPrato and Grisvard to treat evolution equations on a finite interval. In this thesis we develop the holomorphic functional calculus for multisectorial and asymptotically bisectorial operators. We obtain versions of closed-sum theorems that allow to deduce maximal regularity for first and second order Cauchy problems both on the line and for the periodic problem. The results are then applied to prove existence and uniqueness of non-linear evolution equations. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9783832508623
Quantité disponible : 1 disponible(s)