Articles liés à A Coordinate Gradient Descent Method for Structured...

A Coordinate Gradient Descent Method for Structured Nonsmooth Optimization: Theory and Applications - Couverture souple

 
9783836478601: A Coordinate Gradient Descent Method for Structured Nonsmooth Optimization: Theory and Applications

Synopsis

Nonsmooth optimization problems are generally considered to be more difficult than smooth problems. Yet, there is an important class of nonsmooth problems that lie in between. In this book, we consider the problem of minimizing the sum of a smooth function and a (block separable) convex function with or without linear constraints. This problem includes as special cases bound-constrained optimization, smooth optimization with L_1-regularization, and linearly constrained smooth optimization such as a large-scale quadratic programming problem arising in the training of support vector machines. We propose a block coordinate gradient descent method for solving this class of structured nonsmooth problems. The method is simple, highly parallelizable, and suited for large-scale applications in signal/image denoising, regression, and data mining/classification. We establish global convergence and, under a local Lipschitzian error bound assumption, local linear rate of convergence for this method. Our numerical experiences suggest that our method is effective in practice. This book is helpful to the people who are interested in solving large-scale optimization problems.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Sangwoon Yun: PhD in Mathematics at University of Washington. Research interest: Convex and nonsmooth optimization, variational analysis. Research Fellow at National University of Singapore.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 39,24

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour A Coordinate Gradient Descent Method for Structured...

Image fournie par le vendeur

Sangwoon Yun
Edité par VDM Verlag Dr. Müller, 2010
ISBN 10 : 3836478609 ISBN 13 : 9783836478601
Neuf Kartoniert / Broschiert
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Kartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Yun SangwoonSangwoon Yun: PhD in Mathematics at University of Washington. Research interest: Convex and nonsmooth optimization, variational analysis. Research Fellow at National University of Singapore.Nonsmooth optimization pr. N° de réf. du vendeur 5388240

Contacter le vendeur

Acheter neuf

EUR 39,24
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Sangwoon Yun
Edité par VDM Verlag Dr. Müller E.K., 2010
ISBN 10 : 3836478609 ISBN 13 : 9783836478601
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Nonsmooth optimization problems are generally considered to be more difficult than smooth problems. Yet, there is an important class of nonsmooth problems that lie in between. In this book, we consider the problem of minimizing the sum of a smooth function and a (block separable) convex function with or without linear constraints. This problem includes as special cases bound-constrained optimization, smooth optimization with L_1-regularization, and linearly constrained smooth optimization such as a large-scale quadratic programming problem arising in the training of support vector machines. We propose a block coordinate gradient descent method for solving this class of structured nonsmooth problems. The method is simple, highly parallelizable, and suited for large-scale applications in signal/image denoising, regression, and data mining/classification. We establish global convergence and, under a local Lipschitzian error bound assumption, local linear rate of convergence for this method. Our numerical experiences suggest that our method is effective in practice. This book is helpful to the people who are interested in solving large-scale optimization problems. N° de réf. du vendeur 9783836478601

Contacter le vendeur

Acheter neuf

EUR 49
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Sangwoon Yun
ISBN 10 : 3836478609 ISBN 13 : 9783836478601
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Nonsmooth optimization problems are generally considered to be more difficult than smooth problems. Yet, there is an important class of nonsmooth problems that lie in between. In this book, we consider the problem of minimizing the sum of a smooth function and a (block separable) convex function with or without linear constraints. This problem includes as special cases bound-constrained optimization, smooth optimization with L_1-regularization, and linearly constrained smooth optimization such as a large-scale quadratic programming problem arising in the training of support vector machines. We propose a block coordinate gradient descent method for solving this class of structured nonsmooth problems. The method is simple, highly parallelizable, and suited for large-scale applications in signal/image denoising, regression, and data mining/classification. We establish global convergence and, under a local Lipschitzian error bound assumption, local linear rate of convergence for this method. Our numerical experiences suggest that our method is effective in practice. This book is helpful to the people who are interested in solving large-scale optimization problems. 112 pp. Englisch. N° de réf. du vendeur 9783836478601

Contacter le vendeur

Acheter neuf

EUR 49
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Sangwoon Yun
ISBN 10 : 3836478609 ISBN 13 : 9783836478601
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -Nonsmooth optimization problems are generally considered to be more difficult than smooth problems. Yet, there is an important class of nonsmooth problems that lie in between. In this book, we consider the problem of minimizing the sum of a smooth function and a (block separable) convex function with or without linear constraints. This problem includes as special cases bound-constrained optimization, smooth optimization with L_1-regularization, and linearly constrained smooth optimization such as a large-scale quadratic programming problem arising in the training of support vector machines. We propose a block coordinate gradient descent method for solving this class of structured nonsmooth problems. The method is simple, highly parallelizable, and suited for large-scale applications in signal/image denoising, regression, and data mining/classification. We establish global convergence and, under a local Lipschitzian error bound assumption, local linear rate of convergence for this method. Our numerical experiences suggest that our method is effective in practice. This book is helpful to the people who are interested in solving large-scale optimization problems.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 112 pp. Englisch. N° de réf. du vendeur 9783836478601

Contacter le vendeur

Acheter neuf

EUR 49
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Yun, Sangwoon
Edité par Vdm Verlag Dr Mueller E K, 2008
ISBN 10 : 3836478609 ISBN 13 : 9783836478601
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 112 pages. 8.66x5.91x0.26 inches. In Stock. N° de réf. du vendeur 3836478609

Contacter le vendeur

Acheter neuf

EUR 93,30
Autre devise
Frais de port : EUR 11,54
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier