Because of massively parallel distributed nature and very fast convergence rates, recurrent neural networks (RNN) are widely applied to solving many problems in optimization, control and robotic systems, etc. Hence, this book investigates the following RNN models which solve some practical problems, together with their corresponding analysis on stability and convergence. A type of multilayer pole-assignment neural networks is applied to online synthesizing and tuning feedback control systems. Then, a novel RNN model is established by absorbing the first-order time-derivative information to solve the Sylvester equation with time-varying coefficient matrices. A dual neural network is developed to handle quadratic programs subject to linear constraints. The Lagrangian neural network and primal-dual neural network are also reviewed for comparison purposes. The neural networks are then exploited for real-time motion planning of redundant manipulators. The publication is primarily intended for researchers and postgraduates studying in RNN, control and robotics.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Because of massively parallel distributed nature and very fast convergence rates, recurrent neural networks (RNN) are widely applied to solving many problems in optimization, control and robotic systems, etc. Hence, this book investigates the following RNN models which solve some practical problems, together with their corresponding analysis on stability and convergence. A type of multilayer pole-assignment neural networks is applied to online synthesizing and tuning feedback control systems. Then, a novel RNN model is established by absorbing the first-order time-derivative information to solve the Sylvester equation with time-varying coefficient matrices. A dual neural network is developed to handle quadratic programs subject to linear constraints. The Lagrangian neural network and primal-dual neural network are also reviewed for comparison purposes. The neural networks are then exploited for real-time motion planning of redundant manipulators. The publication is primarily intended for researchers and postgraduates studying in RNN, control and robotics.
Yunong Zhang is a professor at School of Information Science and Technology, Sun Yat-Sen University (SYSU), China. Before joining SYSU, he had been with National University of Ireland, University of Strathclyde, National University of Singapore, Chinese University of Hong Kong, since 1999. His main research interests are neural networks.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 28,80 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Zhang YunongYunong Zhang is a professor at School of Information Science and Technology, Sun Yat-Sen University (SYSU), China. Before joining SYSU, he had been with National University of Ireland, University of Strathclyde, National . N° de réf. du vendeur 5411115
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Because of massively parallel distributed nature and very fast convergence rates, recurrent neural networks (RNN) are widely applied to solving many problems in optimization, control and robotic systems, etc. Hence, this book investigates the following RNN models which solve some practical problems, together with their corresponding analysis on stability and convergence. A type of multilayer pole-assignment neural networks is applied to online synthesizing and tuning feedback control systems. Then, a novel RNN model is established by absorbing the first-order time-derivative information to solve the Sylvester equation with time-varying coefficient matrices. A dual neural network is developed to handle quadratic programs subject to linear constraints. The Lagrangian neural network and primal-dual neural network are also reviewed for comparison purposes. The neural networks are then exploited for real-time motion planning of redundant manipulators. The publication is primarily intended for researchers and postgraduates studying in RNN, control and robotics. N° de réf. du vendeur 9783838303826
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Because of massively parallel distributed nature and very fast convergence rates, recurrent neural networks (RNN) are widely applied to solving many problems in optimization, control and robotic systems, etc. Hence, this book investigates the following RNN models which solve some practical problems, together with their corresponding analysis on stability and convergence. A type of multilayer pole-assignment neural networks is applied to online synthesizing and tuning feedback control systems. Then, a novel RNN model is established by absorbing the first-order time-derivative information to solve the Sylvester equation with time-varying coefficient matrices. A dual neural network is developed to handle quadratic programs subject to linear constraints. The Lagrangian neural network and primal-dual neural network are also reviewed for comparison purposes. The neural networks are then exploited for real-time motion planning of redundant manipulators. The publication is primarily intended for researchers and postgraduates studying in RNN, control and robotics. 200 pp. Englisch. N° de réf. du vendeur 9783838303826
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Because of massively parallel distributed nature and very fast convergence rates, recurrent neural networks (RNN) are widely applied to solving many problems in optimization, control and robotic systems, etc. Hence, this book investigates the following RNN models which solve some practical problems, together with their corresponding analysis on stability and convergence. A type of multilayer pole-assignment neural networks is applied to online synthesizing and tuning feedback control systems. Then, a novel RNN model is established by absorbing the first-order time-derivative information to solve the Sylvester equation with time-varying coefficient matrices. A dual neural network is developed to handle quadratic programs subject to linear constraints. The Lagrangian neural network and primal-dual neural network are also reviewed for comparison purposes. The neural networks are then exploited for real-time motion planning of redundant manipulators. The publication is primarily intended for researchers and postgraduates studying in RNN, control and robotics.Books on Demand GmbH, Überseering 33, 22297 Hamburg 200 pp. Englisch. N° de réf. du vendeur 9783838303826
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 200. N° de réf. du vendeur 26128855531
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 200 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. N° de réf. du vendeur 131699252
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 200. N° de réf. du vendeur 18128855521
Quantité disponible : 4 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA79038383038226
Quantité disponible : 1 disponible(s)