Diffusion processes are widely used in many applied disciplines, such as biology, physics and financial mathematics. From the applied perspective multivariate diffusions are more interesting than scalar ones since only multidimensional models can describe the evolution of variables which interact among themselves. It is therefore very important to be able to identify such models starting from the observed data. However, while the scalar case has been widely studied, there are very few results for the multidimensional problem since these models present greater difficulties. This work provides a first insight into the problem of identification of multidimensional diffusions: the purpose is to estimate density and drift by the observation of a trajectory of a d-dimensional homogeneous diffusion process with a unique invariant density. Estimators of the kernel type are proposed and their asymptotic properties are studied using different criteria. Rates of convergence are also provided. Performance of the estimators are examined in a simulation study, showing encouraging results. This analysis should be useful to researchers in the field and to anyone who may need to study this subject.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Diffusion processes are widely used in many applied disciplines, such as biology, physics and financial mathematics. From the applied perspective multivariate diffusions are more interesting than scalar ones since only multidimensional models can describe the evolution of variables which interact among themselves. It is therefore very important to be able to identify such models starting from the observed data. However, while the scalar case has been widely studied, there are very few results for the multidimensional problem since these models present greater difficulties. This work provides a first insight into the problem of identification of multidimensional diffusions: the purpose is to estimate density and drift by the observation of a trajectory of a d-dimensional homogeneous diffusion process with a unique invariant density. Estimators of the kernel type are proposed and their asymptotic properties are studied using different criteria. Rates of convergence are also provided. Performance of the estimators are examined in a simulation study, showing encouraging results. This analysis should be useful to researchers in the field and to anyone who may need to study this subject.
Annamaria Bianchi, phD in Matematica e Statistica per le Scienze Computazionali (University of Milan) and Docteur en Sciences Mathématiques (University Paris 6). Since 2007 she is research assistant at the University of Bergamo. Her research fields are statistics for diffusions, M-quantile regression and small area estimation.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 28,83 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 5412424
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Diffusion processes are widely used in many applied disciplines, such as biology, physics and financial mathematics. From the applied perspective multivariate diffusions are more interesting than scalar ones since only multidimensional models can describe the evolution of variables which interact among themselves. It is therefore very important to be able to identify such models starting from the observed data. However, while the scalar case has been widely studied, there are very few results for the multidimensional problem since these models present greater difficulties. This work provides a first insight into the problem of identification of multidimensional diffusions: the purpose is to estimate density and drift by the observation of a trajectory of a d-dimensional homogeneous diffusion process with a unique invariant density. Estimators of the kernel type are proposed and their asymptotic properties are studied using different criteria. Rates of convergence are also provided. Performance of the estimators are examined in a simulation study, showing encouraging results. This analysis should be useful to researchers in the field and to anyone who may need to study this subject. N° de réf. du vendeur 9783838317458
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Diffusion processes are widely used in many applied disciplines, such as biology, physics and financial mathematics. From the applied perspective multivariate diffusions are more interesting than scalar ones since only multidimensional models can describe the evolution of variables which interact among themselves. It is therefore very important to be able to identify such models starting from the observed data. However, while the scalar case has been widely studied, there are very few results for the multidimensional problem since these models present greater difficulties. This work provides a first insight into the problem of identification of multidimensional diffusions: the purpose is to estimate density and drift by the observation of a trajectory of a d-dimensional homogeneous diffusion process with a unique invariant density. Estimators of the kernel type are proposed and their asymptotic properties are studied using different criteria. Rates of convergence are also provided. Performance of the estimators are examined in a simulation study, showing encouraging results. This analysis should be useful to researchers in the field and to anyone who may need to study this subject. 116 pp. Englisch. N° de réf. du vendeur 9783838317458
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Diffusion processes are widely used in many applied disciplines, such as biology, physics and financial mathematics. From the applied perspective multivariate diffusions are more interesting than scalar ones since only multidimensional models can describe the evolution of variables which interact among themselves. It is therefore very important to be able to identify such models starting from the observed data. However, while the scalar case has been widely studied, there are very few results for the multidimensional problem since these models present greater difficulties. This work provides a first insight into the problem of identification of multidimensional diffusions: the purpose is to estimate density and drift by the observation of a trajectory of a d-dimensional homogeneous diffusion process with a unique invariant density. Estimators of the kernel type are proposed and their asymptotic properties are studied using different criteria. Rates of convergence are also provided. Performance of the estimators are examined in a simulation study, showing encouraging results. This analysis should be useful to researchers in the field and to anyone who may need to study this subject.Books on Demand GmbH, Überseering 33, 22297 Hamburg 116 pp. Englisch. N° de réf. du vendeur 9783838317458
Quantité disponible : 2 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA79638383174596
Quantité disponible : 1 disponible(s)