Adaptive channel equalisers compensate the disruptive effects caused by band-limited channels, hence enabling higher data rate in digital communication. Designing efficient equalisers based on low structural complexity is an area of interest amongst communication system designers. This research has significantly contributed to the development of novel equaliser structures in the neural network paradigm on the framework of both the feedforward neural network and the recurrent neural network of low structural complexity. Various innovative techniques like hierarchical knowledge reinforcement, genetic evolutionary concept, transform domain approach, tuning of sigmoid slope of neuron using fuzzy logic concept have been incorporated into an FNN framework to design highly efficient equaliser structures. Subsequently, an hybrid concept of using cascaded modules of RNN and FNN in various configurations has also been proposed. Significant performance improvement over the conventional equalisers in terms of BER, faster adaptation rate and ease of implementation are the major advantages of the proposed neural network based equalisers.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 28,81 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Adaptive channel equalisers compensate the disruptive effects caused by band-limited channels, hence enabling higher data rate in digital communication. Designing efficient equalisers based on low structural complexity is an area of interest amongst communi. N° de réf. du vendeur 5412769
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Adaptive channel equalisers compensate the disruptive effects caused by band-limited channels, hence enabling higher data rate in digital communication. Designing efficient equalisers based on low structural complexity is an area of interest amongst communication system designers. This research has significantly contributed to the development of novel equaliser structures in the neural network paradigm on the framework of both the feedforward neural network and the recurrent neural network of low structural complexity. Various innovative techniques like hierarchical knowledge reinforcement, genetic evolutionary concept, transform domain approach, tuning of sigmoid slope of neuron using fuzzy logic concept have been incorporated into an FNN framework to design highly efficient equaliser structures. Subsequently, an hybrid concept of using cascaded modules of RNN and FNN in various configurations has also been proposed. Significant performance improvement over the conventional equalisers in terms of BER, faster adaptation rate and ease of implementation are the major advantages of the proposed neural network based equalisers. N° de réf. du vendeur 9783838321042
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Adaptive channel equalisers compensate the disruptive effects caused by band-limited channels, hence enabling higher data rate in digital communication. Designing efficient equalisers based on low structural complexity is an area of interest amongst communication system designers. This research has significantly contributed to the development of novel equaliser structures in the neural network paradigm on the framework of both the feedforward neural network and the recurrent neural network of low structural complexity. Various innovative techniques like hierarchical knowledge reinforcement, genetic evolutionary concept, transform domain approach, tuning of sigmoid slope of neuron using fuzzy logic concept have been incorporated into an FNN framework to design highly efficient equaliser structures. Subsequently, an hybrid concept of using cascaded modules of RNN and FNN in various configurations has also been proposed. Significant performance improvement over the conventional equalisers in terms of BER, faster adaptation rate and ease of implementation are the major advantages of the proposed neural network based equalisers. 216 pp. Englisch. N° de réf. du vendeur 9783838321042
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Adaptive channel equalisers compensate the disruptive effects caused by band-limited channels, hence enabling higher data rate in digital communication. Designing efficient equalisers based on low structural complexity is an area of interest amongst communication system designers. This research has significantly contributed to the development of novel equaliser structures in the neural network paradigm on the framework of both the feedforward neural network and the recurrent neural network of low structural complexity. Various innovative techniques like hierarchical knowledge reinforcement, genetic evolutionary concept, transform domain approach, tuning of sigmoid slope of neuron using fuzzy logic concept have been incorporated into an FNN framework to design highly efficient equaliser structures. Subsequently, an hybrid concept of using cascaded modules of RNN and FNN in various configurations has also been proposed. Significant performance improvement over the conventional equalisers in terms of BER, faster adaptation rate and ease of implementation are the major advantages of the proposed neural network based equalisers.Books on Demand GmbH, Überseering 33, 22297 Hamburg 216 pp. Englisch. N° de réf. du vendeur 9783838321042
Quantité disponible : 2 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA75838383210496
Quantité disponible : 1 disponible(s)