Missing data often arises in regression analysis either by study design or stochastic censoring. Restriction of analysis to complete observations may yield biased inferences. Developing likelihood-based methods for analyzing missing data in a regression setting has largely focused on missing values in the dependent variable. In this book, we discuss two likelihood-based approaches to inference for the regression of multivariate categorical outcomes on a set of covariates when some of the covariate values are missing. Specifically, this research seeks to develop methodologies in the context of latent variable models that (i) synthesize multiple outcomes into an latent construct that is easily interpretable yet retains relevant heterogeneity in individual outcomes; (ii) account for measurement inaccuracy in observable outcomes; (iii) model the association between the latent construct and covariates; (iv) handle missing covariate data in both ignorable and nonignorable cases. This book should be of particular interest to psychosocial scientists and others who plan to use latent variables models, but are discouraged by the daunting analytical difficulties associated with missing data.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Missing data often arises in regression analysis either by study design or stochastic censoring. Restriction of analysis to complete observations may yield biased inferences. Developing likelihood-based methods for analyzing missing data in a regression setting has largely focused on missing values in the dependent variable. In this book, we discuss two likelihood-based approaches to inference for the regression of multivariate categorical outcomes on a set of covariates when some of the covariate values are missing. Specifically, this research seeks to develop methodologies in the context of latent variable models that (i) synthesize multiple outcomes into an latent construct that is easily interpretable yet retains relevant heterogeneity in individual outcomes; (ii) account for measurement inaccuracy in observable outcomes; (iii) model the association between the latent construct and covariates; (iv) handle missing covariate data in both ignorable and nonignorable cases. This book should be of particular interest to psychosocial scientists and others who plan to use latent variables models, but are discouraged by the daunting analytical difficulties associated with missing data.
Qian-Li Xue, Ph.D.: Studied Biostatistics at the Johns Hopkins University; Assistant Professor of Medicine, Biostatistics at the Johns Hopkins University. Karen Bandeen-Roche, Ph.D.: Studied Operations Research and Industrial Engineering at Cornell University; Hurley Dorrier Professor and Chair of Biostatistics at the Johns Hopkins University.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Missing data often arises in regression analysis either by study design or stochastic censoring. Restriction of analysis to complete observations may yield biased inferences. Developing likelihood-based methods for analyzing missing data in a regression set. N° de réf. du vendeur 5412820
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Missing data often arises in regression analysis either by study design or stochastic censoring. Restriction of analysis to complete observations may yield biased inferences. Developing likelihood-based methods for analyzing missing data in a regression setting has largely focused on missing values in the dependent variable. In this book, we discuss two likelihood-based approaches to inference for the regression of multivariate categorical outcomes on a set of covariates when some of the covariate values are missing. Specifically, this research seeks to develop methodologies in the context of latent variable models that (i) synthesize multiple outcomes into an latent construct that is easily interpretable yet retains relevant heterogeneity in individual outcomes; (ii) account for measurement inaccuracy in observable outcomes; (iii) model the association between the latent construct and covariates; (iv) handle missing covariate data in both ignorable and nonignorable cases. This book should be of particular interest to psychosocial scientists and others who plan to use latent variables models, but are discouraged by the daunting analytical difficulties associated with missing data. N° de réf. du vendeur 9783838321578
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Missing data often arises in regression analysis either by study design or stochastic censoring. Restriction of analysis to complete observations may yield biased inferences. Developing likelihood-based methods for analyzing missing data in a regression setting has largely focused on missing values in the dependent variable. In this book, we discuss two likelihood-based approaches to inference for the regression of multivariate categorical outcomes on a set of covariates when some of the covariate values are missing. Specifically, this research seeks to develop methodologies in the context of latent variable models that (i) synthesize multiple outcomes into an latent construct that is easily interpretable yet retains relevant heterogeneity in individual outcomes; (ii) account for measurement inaccuracy in observable outcomes; (iii) model the association between the latent construct and covariates; (iv) handle missing covariate data in both ignorable and nonignorable cases. This book should be of particular interest to psychosocial scientists and others who plan to use latent variables models, but are discouraged by the daunting analytical difficulties associated with missing data. 148 pp. Englisch. N° de réf. du vendeur 9783838321578
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Missing data often arises in regression analysis either by study design or stochastic censoring. Restriction of analysis to complete observations may yield biased inferences. Developing likelihood-based methods for analyzing missing data in a regression setting has largely focused on missing values in the dependent variable. In this book, we discuss two likelihood-based approaches to inference for the regression of multivariate categorical outcomes on a set of covariates when some of the covariate values are missing. Specifically, this research seeks to develop methodologies in the context of latent variable models that (i) synthesize multiple outcomes into an latent construct that is easily interpretable yet retains relevant heterogeneity in individual outcomes; (ii) account for measurement inaccuracy in observable outcomes; (iii) model the association between the latent construct and covariates; (iv) handle missing covariate data in both ignorable and nonignorable cases. This book should be of particular interest to psychosocial scientists and others who plan to use latent variables models, but are discouraged by the daunting analytical difficulties associated with missing data.Books on Demand GmbH, Überseering 33, 22297 Hamburg 148 pp. Englisch. N° de réf. du vendeur 9783838321578
Quantité disponible : 2 disponible(s)