Data mining is a process of discovering hidden relationships in large amounts of data. Frequent pattern discovery is an important research area in the field of data mining. Its purpose is to find patterns which appear frequently in a large collection of data. This work deals with three main areas of frequent pattern mining, namely, frequent itemset, frequent sequence and frequent subtree discovery. Beside providing a brief overview of related works of each single frequent pattern mining problem mentioned before, the three theses offered in this work suggest novel methods for efficient discovery of the different types of frequent patterns. The new methods are compared to the best-known algorithms in the related fields. The performance analysis of the methods involves measurements of the execution time and memory requirements.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Data mining is a process of discovering hidden relationships in large amounts of data. Frequent pattern discovery is an important research area in the field of data mining. Its purpose is to find patterns which appear frequently in a large collection of data. This work deals with three main areas of frequent pattern mining, namely, frequent itemset, frequent sequence and frequent subtree discovery. Beside providing a brief overview of related works of each single frequent pattern mining problem mentioned before, the three theses offered in this work suggest novel methods for efficient discovery of the different types of frequent patterns. The new methods are compared to the best-known algorithms in the related fields. The performance analysis of the methods involves measurements of the execution time and memory requirements.
Renáta Iváncsy received her Ph.D degree in 2006. She is Associate Proffesor at Department of Automation and Applied Informatics of the Budapest University of Technology and Economics. Her research field is data mining, particularly frequent pattern discovery, clustering and text data mining.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 29,19 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 5465945
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Data mining is a process of discovering hidden relationships in large amounts of data. Frequent pattern discovery is an important research area in the field of data mining. Its purpose is to find patterns which appear frequently in a large collection of data. This work deals with three main areas of frequent pattern mining, namely, frequent itemset, frequent sequence and frequent subtree discovery. Beside providing a brief overview of related works of each single frequent pattern mining problem mentioned before, the three theses offered in this work suggest novel methods for efficient discovery of the different types of frequent patterns. The new methods are compared to the best-known algorithms in the related fields. The performance analysis of the methods involves measurements of the execution time and memory requirements. N° de réf. du vendeur 9783843359740
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Data mining is a process of discovering hidden relationships in large amounts of data. Frequent pattern discovery is an important research area in the field of data mining. Its purpose is to find patterns which appear frequently in a large collection of data. This work deals with three main areas of frequent pattern mining, namely, frequent itemset, frequent sequence and frequent subtree discovery. Beside providing a brief overview of related works of each single frequent pattern mining problem mentioned before, the three theses offered in this work suggest novel methods for efficient discovery of the different types of frequent patterns. The new methods are compared to the best-known algorithms in the related fields. The performance analysis of the methods involves measurements of the execution time and memory requirements. 144 pp. Englisch. N° de réf. du vendeur 9783843359740
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Data mining is a process of discovering hidden relationships in large amounts of data. Frequent pattern discovery is an important research area in the field of data mining. Its purpose is to find patterns which appear frequently in a large collection of data. This work deals with three main areas of frequent pattern mining, namely, frequent itemset, frequent sequence and frequent subtree discovery. Beside providing a brief overview of related works of each single frequent pattern mining problem mentioned before, the three theses offered in this work suggest novel methods for efficient discovery of the different types of frequent patterns. The new methods are compared to the best-known algorithms in the related fields. The performance analysis of the methods involves measurements of the execution time and memory requirements.Books on Demand GmbH, Überseering 33, 22297 Hamburg 144 pp. Englisch. N° de réf. du vendeur 9783843359740
Quantité disponible : 2 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA79038433597416
Quantité disponible : 1 disponible(s)