This book focuses on the real-coded genetic algorithm and different topologies of feed-forward neural networks. Results in the following areas will be reported: (1) a real-coded genetic algorithm with new crossover and mutation operations, and its applications; (2) three different topologies of variable feed-forward neural networks, and their applications to short-term electric load forecasting and hand-written graffiti recognition. The real-coded genetic algorithm (RCGA) is one evolutionary computation technique that can tackle complex optimization problems. In this book, RCGA with new genetic operations called the average-bound crossover (ABX) and wavelet mutation (WM) will be presented. The three proposed topologies of variable feed- forward network networks are: (1) the variable- structure neural network (VSNN), (2) the variable- parameter neural network (VPNN), and (3) the variable-node-to-node-link neural network (VN2NN). By taking advantage of these networks' structures, the learning and generalization abilities of the networks can be increased. All the network parameters are tuned by the RCGA with ABX and WM.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 28,80 expédition depuis Royaume-Uni vers Etats-Unis
Destinations, frais et délaisEUR 23 expédition depuis Allemagne vers Etats-Unis
Destinations, frais et délaisVendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on the real-coded genetic algorithm and different topologies of feed-forward neural networks. Results in the following areas will be reported: (1) a real-coded genetic algorithm with new crossover and mutation operations, and its applications; (2) three different topologies of variable feed-forward neural networks, and their applications to short-term electric load forecasting and hand-written graffiti recognition. The real-coded genetic algorithm (RCGA) is one evolutionary computation technique that can tackle complex optimization problems. In this book, RCGA with new genetic operations called the average-bound crossover (ABX) and wavelet mutation (WM) will be presented. The three proposed topologies of variable feed- forward network networks are: (1) the variable- structure neural network (VSNN), (2) the variable- parameter neural network (VPNN), and (3) the variable-node-to-node-link neural network (VN2NN). By taking advantage of these networks' structures, the learning and generalization abilities of the networks can be increased. All the network parameters are tuned by the RCGA with ABX and WM. 252 pp. Englisch. N° de réf. du vendeur 9783843367295
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 5466665
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book focuses on the real-coded genetic algorithm and different topologies of feed-forward neural networks. Results in the following areas will be reported: (1) a real-coded genetic algorithm with new crossover and mutation operations, and its applications; (2) three different topologies of variable feed-forward neural networks, and their applications to short-term electric load forecasting and hand-written graffiti recognition. The real-coded genetic algorithm (RCGA) is one evolutionary computation technique that can tackle complex optimization problems. In this book, RCGA with new genetic operations called the average-bound crossover (ABX) and wavelet mutation (WM) will be presented. The three proposed topologies of variable feed- forward network networks are: (1) the variable- structure neural network (VSNN), (2) the variable- parameter neural network (VPNN), and (3) the variable-node-to-node-link neural network (VN2NN). By taking advantage of these networks' structures, the learning and generalization abilities of the networks can be increased. All the network parameters are tuned by the RCGA with ABX and WM.Books on Demand GmbH, Überseering 33, 22297 Hamburg 252 pp. Englisch. N° de réf. du vendeur 9783843367295
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book focuses on the real-coded genetic algorithm and different topologies of feed-forward neural networks. Results in the following areas will be reported: (1) a real-coded genetic algorithm with new crossover and mutation operations, and its applications; (2) three different topologies of variable feed-forward neural networks, and their applications to short-term electric load forecasting and hand-written graffiti recognition. The real-coded genetic algorithm (RCGA) is one evolutionary computation technique that can tackle complex optimization problems. In this book, RCGA with new genetic operations called the average-bound crossover (ABX) and wavelet mutation (WM) will be presented. The three proposed topologies of variable feed- forward network networks are: (1) the variable- structure neural network (VSNN), (2) the variable- parameter neural network (VPNN), and (3) the variable-node-to-node-link neural network (VN2NN). By taking advantage of these networks' structures, the learning and generalization abilities of the networks can be increased. All the network parameters are tuned by the RCGA with ABX and WM. N° de réf. du vendeur 9783843367295
Quantité disponible : 1 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA78738433672996
Quantité disponible : 1 disponible(s)