This book present a bio-inspired topology control mechanism, force-based genetic algorithm (FGA), where a GA is run by each mobile node to achieve a uniform spread of nodes and to provide a fully connected network over an unknown area. We provide a formal analysis of FGA in terms of convergence speed, uniformity at area coverage, and Lyapunov stability theorem. This work also emphasizes the use of nodes to achieve a uniform distribution over an unknown terrain without a priori information. In contrast, each node running our FGA has to make its own movement direction and speed decisions based on local neighborhood information, such as obstacles and the number of neighbors, without a centralized control unit or global knowledge. The stochastic behavior of FGA makes it difficult to analyze its convergence speed. We built metrically transitive homogeneous and inhomogeneous Markov chain models to analyze the convergence of our FGA with respect to the communication ranges of mobile nodes and the total number of nodes in the system. The Dobrushin contraction coefficient of ergodicity is used for measuring convergence speed for the Markov chain models of our FGA.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 28,80 expédition depuis Royaume-Uni vers Etats-Unis
Destinations, frais et délaisEUR 23 expédition depuis Allemagne vers Etats-Unis
Destinations, frais et délaisVendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book present a bio-inspired topology control mechanism, force-based genetic algorithm (FGA), where a GA is run by each mobile node to achieve a uniform spread of nodes and to provide a fully connected network over an unknown area. We provide a formal analysis of FGA in terms of convergence speed, uniformity at area coverage, and Lyapunov stability theorem. This work also emphasizes the use of nodes to achieve a uniform distribution over an unknown terrain without a priori information. In contrast, each node running our FGA has to make its own movement direction and speed decisions based on local neighborhood information, such as obstacles and the number of neighbors, without a centralized control unit or global knowledge. The stochastic behavior of FGA makes it difficult to analyze its convergence speed. We built metrically transitive homogeneous and inhomogeneous Markov chain models to analyze the convergence of our FGA with respect to the communication ranges of mobile nodes and the total number of nodes in the system. The Dobrushin contraction coefficient of ergodicity is used for measuring convergence speed for the Markov chain models of our FGA. 136 pp. Englisch. N° de réf. du vendeur 9783844309027
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Sahin CemCem Safak Sahin, Ph.D.: received his BS degree from Gazi University, Turkey in 1996, MS degree from Middle East Technical University, Turkey in 2000, and MPhil. and Ph.D. degrees from the City University of New York, USA . N° de réf. du vendeur 5471385
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -This book present a bio-inspired topology control mechanism, force-based genetic algorithm (FGA), where a GA is run by each mobile node to achieve a uniform spread of nodes and to provide a fully connected network over an unknown area. We provide a formal analysis of FGA in terms of convergence speed, uniformity at area coverage, and Lyapunov stability theorem. This work also emphasizes the use of nodes to achieve a uniform distribution over an unknown terrain without a priori information. In contrast, each node running our FGA has to make its own movement direction and speed decisions based on local neighborhood information, such as obstacles and the number of neighbors, without a centralized control unit or global knowledge. The stochastic behavior of FGA makes it difficult to analyze its convergence speed. We built metrically transitive homogeneous and inhomogeneous Markov chain models to analyze the convergence of our FGA with respect to the communication ranges of mobile nodes and the total number of nodes in the system. The Dobrushin contraction coefficient of ergodicity is used for measuring convergence speed for the Markov chain models of our FGA.Books on Demand GmbH, Überseering 33, 22297 Hamburg 136 pp. Englisch. N° de réf. du vendeur 9783844309027
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book present a bio-inspired topology control mechanism, force-based genetic algorithm (FGA), where a GA is run by each mobile node to achieve a uniform spread of nodes and to provide a fully connected network over an unknown area. We provide a formal analysis of FGA in terms of convergence speed, uniformity at area coverage, and Lyapunov stability theorem. This work also emphasizes the use of nodes to achieve a uniform distribution over an unknown terrain without a priori information. In contrast, each node running our FGA has to make its own movement direction and speed decisions based on local neighborhood information, such as obstacles and the number of neighbors, without a centralized control unit or global knowledge. The stochastic behavior of FGA makes it difficult to analyze its convergence speed. We built metrically transitive homogeneous and inhomogeneous Markov chain models to analyze the convergence of our FGA with respect to the communication ranges of mobile nodes and the total number of nodes in the system. The Dobrushin contraction coefficient of ergodicity is used for measuring convergence speed for the Markov chain models of our FGA. N° de réf. du vendeur 9783844309027
Quantité disponible : 1 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA75838443090206
Quantité disponible : 1 disponible(s)