In this work the existence and uniqueness theorem for single linear Volterra integral equation has been generalized to a system of linear Volterra integral equation of the second kind. Depending on Banach fixed point theorem, some new results have been proved.Also, a Taylor series expansion has been considered to solve a system of linear Volterra integral equations of the second kind and a system of linear Volterra integro-differential equations of the second kind.In addition, three different types of iterative methods have been formulated to solve above systems. Furthermore, we derive a new iterative method named by "modified successive approximation method" to solve above systems. By this modification a faster rate of convergence for the successive method is established. Also, we proved a new theorem about the existence, uniqueness and convergence of this method. Two different kinds of weighted residual methods have been applied to treat the above systems. Moreover, the spectral method has been modified and applied for solving the above systems.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
In this work the existence and uniqueness theorem for single linear Volterra integral equation has been generalized to a system of linear Volterra integral equation of the second kind. Depending on Banach fixed point theorem, some new results have been proved.Also, a Taylor series expansion has been considered to solve a system of linear Volterra integral equations of the second kind and a system of linear Volterra integro-differential equations of the second kind.In addition, three different types of iterative methods have been formulated to solve above systems. Furthermore, we derive a new iterative method named by "modified successive approximation method" to solve above systems. By this modification a faster rate of convergence for the successive method is established. Also, we proved a new theorem about the existence, uniqueness and convergence of this method. Two different kinds of weighted residual methods have been applied to treat the above systems. Moreover, the spectral method has been modified and applied for solving the above systems.
Name: Dr. Rostam K. Saeed Place of Birth: Iraqi Kurdistan Region, Erbil. Scientific Rank: Professor E-mail: rostamkarim@yahoo.com, rostamkarim64@uni-sci.org
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 29,19 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 10,99 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In this work the existence and uniqueness theorem for single linear Volterra integral equation has been generalized to a system of linear Volterra integral equation of the second kind. Depending on Banach fixed point theorem, some new results have been proved.Also, a Taylor series expansion has been considered to solve a system of linear Volterra integral equations of the second kind and a system of linear Volterra integro-differential equations of the second kind.In addition, three different types of iterative methods have been formulated to solve above systems. Furthermore, we derive a new iterative method named by 'modified successive approximation method' to solve above systems. By this modification a faster rate of convergence for the successive method is established. Also, we proved a new theorem about the existence, uniqueness and convergence of this method. Two different kinds of weighted residual methods have been applied to treat the above systems. Moreover, the spectral method has been modified and applied for solving the above systems. N° de réf. du vendeur 9783844330755
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this work the existence and uniqueness theorem for single linear Volterra integral equation has been generalized to a system of linear Volterra integral equation of the second kind. Depending on Banach fixed point theorem, some new results have been proved.Also, a Taylor series expansion has been considered to solve a system of linear Volterra integral equations of the second kind and a system of linear Volterra integro-differential equations of the second kind.In addition, three different types of iterative methods have been formulated to solve above systems. Furthermore, we derive a new iterative method named by 'modified successive approximation method' to solve above systems. By this modification a faster rate of convergence for the successive method is established. Also, we proved a new theorem about the existence, uniqueness and convergence of this method. Two different kinds of weighted residual methods have been applied to treat the above systems. Moreover, the spectral method has been modified and applied for solving the above systems. 164 pp. Englisch. N° de réf. du vendeur 9783844330755
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -In this work the existence and uniqueness theorem for single linear Volterra integral equation has been generalized to a system of linear Volterra integral equation of the second kind. Depending on Banach fixed point theorem, some new results have been proved.Also, a Taylor series expansion has been considered to solve a system of linear Volterra integral equations of the second kind and a system of linear Volterra integro-differential equations of the second kind.In addition, three different types of iterative methods have been formulated to solve above systems. Furthermore, we derive a new iterative method named by 'modified successive approximation method' to solve above systems. By this modification a faster rate of convergence for the successive method is established. Also, we proved a new theorem about the existence, uniqueness and convergence of this method. Two different kinds of weighted residual methods have been applied to treat the above systems. Moreover, the spectral method has been modified and applied for solving the above systems.Books on Demand GmbH, Überseering 33, 22297 Hamburg 164 pp. Englisch. N° de réf. du vendeur 9783844330755
Quantité disponible : 2 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA79638443307556
Quantité disponible : 1 disponible(s)