Adaptive modulation and diversity combining represent very important adaptive solutions for future generations of wireless communication systems. Indeed, to improve the performance and the efficiency of these systems, these two techniques recently have been used jointly in new schemes named joint adaptive modulation and diversity combining (JAMDC) schemes. Considering the problem of finding lowcomplexity, bandwidth-efficient, and processing-power efficient transmission schemes for a downlink scenario and capitalizing on some of these recently proposed JAMDC schemes, we propose and analyze three fully joint adaptive modulation, diversity combining, and power control (FJAMDC) schemes. More specifically, the modulation constellation size, the number of combined diversity paths, and the needed power level are determined jointly to achieve the highest spectral efficiency with the lowest possible combining complexity, given the fading channel conditions and the required bit error rate (BER) performance. The performance of these three FJAMDC schemes is analyzed in terms of their spectral efficiency, processing power consumption, and error- rate performance.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Adaptive modulation and diversity combining represent very important adaptive solutions for future generations of wireless communication systems. Indeed, to improve the performance and the efficiency of these systems, these two techniques recently have been used jointly in new schemes named joint adaptive modulation and diversity combining (JAMDC) schemes. Considering the problem of finding lowcomplexity, bandwidth-efficient, and processing-power efficient transmission schemes for a downlink scenario and capitalizing on some of these recently proposed JAMDC schemes, we propose and analyze three fully joint adaptive modulation, diversity combining, and power control (FJAMDC) schemes. More specifically, the modulation constellation size, the number of combined diversity paths, and the needed power level are determined jointly to achieve the highest spectral efficiency with the lowest possible combining complexity, given the fading channel conditions and the required bit error rate (BER) performance. The performance of these three FJAMDC schemes is analyzed in terms of their spectral efficiency, processing power consumption, and error- rate performance.
Received the Diplôme d’Ingénieur degree from Ecole Supérieure des Communications de Tunis (Sup’Com), Tunis, in June 2006. He received the M.S. degree in Electrical Engineering from Texas A&M University (TAMU), College Station, in 2009. His research interests include wireless communications, diversity techniques, and underlay cognitive radio.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Adaptive modulation and diversity combining represent very important adaptive solutions for future generations of wireless communication systems. Indeed, to improve the performance and the efficiency of these systems, these two techniques recently have been used jointly in new schemes named joint adaptive modulation and diversity combining (JAMDC) schemes. Considering the problem of finding lowcomplexity, bandwidth-efficient, and processing-power efficient transmission schemes for a downlink scenario and capitalizing on some of these recently proposed JAMDC schemes, we propose and analyze three fully joint adaptive modulation, diversity combining, and power control (FJAMDC) schemes. More specifically, the modulation constellation size, the number of combined diversity paths, and the needed power level are determined jointly to achieve the highest spectral efficiency with the lowest possible combining complexity, given the fading channel conditions and the required bit error rate (BER) performance. The performance of these three FJAMDC schemes is analyzed in terms of their spectral efficiency, processing power consumption, and error- rate performance. 48 pp. Englisch. N° de réf. du vendeur 9783844397475
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 48. N° de réf. du vendeur 26128838622
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 48 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. N° de réf. du vendeur 131748865
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 48. N° de réf. du vendeur 18128838612
Quantité disponible : 4 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 5477215
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Adaptive modulation and diversity combining represent very important adaptive solutions for future generations of wireless communication systems. Indeed, to improve the performance and the efficiency of these systems, these two techniques recently have been used jointly in new schemes named joint adaptive modulation and diversity combining (JAMDC) schemes. Considering the problem of finding lowcomplexity, bandwidth-efficient, and processing-power efficient transmission schemes for a downlink scenario and capitalizing on some of these recently proposed JAMDC schemes, we propose and analyze three fully joint adaptive modulation, diversity combining, and power control (FJAMDC) schemes. More specifically, the modulation constellation size, the number of combined diversity paths, and the needed power level are determined jointly to achieve the highest spectral efficiency with the lowest possible combining complexity, given the fading channel conditions and the required bit error rate (BER) performance. The performance of these three FJAMDC schemes is analyzed in terms of their spectral efficiency, processing power consumption, and error- rate performance.Books on Demand GmbH, Überseering 33, 22297 Hamburg 48 pp. Englisch. N° de réf. du vendeur 9783844397475
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Adaptive modulation and diversity combining represent very important adaptive solutions for future generations of wireless communication systems. Indeed, to improve the performance and the efficiency of these systems, these two techniques recently have been used jointly in new schemes named joint adaptive modulation and diversity combining (JAMDC) schemes. Considering the problem of finding lowcomplexity, bandwidth-efficient, and processing-power efficient transmission schemes for a downlink scenario and capitalizing on some of these recently proposed JAMDC schemes, we propose and analyze three fully joint adaptive modulation, diversity combining, and power control (FJAMDC) schemes. More specifically, the modulation constellation size, the number of combined diversity paths, and the needed power level are determined jointly to achieve the highest spectral efficiency with the lowest possible combining complexity, given the fading channel conditions and the required bit error rate (BER) performance. The performance of these three FJAMDC schemes is analyzed in terms of their spectral efficiency, processing power consumption, and error- rate performance. N° de réf. du vendeur 9783844397475
Quantité disponible : 1 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. JOINT DIVERSITY COMBINING, ADAPTIVE MODULATION, AND POWER CONTROL | Performance Analysis | Zied Bouida (u. a.) | Taschenbuch | 48 S. | Englisch | 2011 | LAP LAMBERT Academic Publishing | EAN 9783844397475 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. N° de réf. du vendeur 106959062
Quantité disponible : 5 disponible(s)