A number of research efforts had been devoted to forecasting stock price based on technical indicators which rely purely on historical stock price data. However, the performances of such technical indicators have not always satisfactory. The fact is, there are other influential factors that can affect the direction of stock market which form the basis of market experts’ opinion such as interest rate, inflation rate, foreign exchange rate, business sector, management caliber, investors’ confidence, government policy and political effects, among others. In this study, the effect of using hybrid market indicators such as technical and fundamental parameters as well as experts’ opinions for stock price prediction was examined. Values of variables representing these market hybrid indicators were fed into the artificial neural network (ANN) model for stock price prediction. The empirical results obtained with published stock data show that the proposed model is effective in improving the accuracy of stock price prediction. Also, the performance of the neural network predictive model developed in this study was compared with the conventional Box-Jenkins autoregressive integrated moving
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
A number of research efforts had been devoted to forecasting stock price based on technical indicators which rely purely on historical stock price data. However, the performances of such technical indicators have not always satisfactory. The fact is, there are other influential factors that can affect the direction of stock market which form the basis of market experts’ opinion such as interest rate, inflation rate, foreign exchange rate, business sector, management caliber, investors’ confidence, government policy and political effects, among others. In this study, the effect of using hybrid market indicators such as technical and fundamental parameters as well as experts’ opinions for stock price prediction was examined. Values of variables representing these market hybrid indicators were fed into the artificial neural network (ANN) model for stock price prediction. The empirical results obtained with published stock data show that the proposed model is effective in improving the accuracy of stock price prediction. Also, the performance of the neural network predictive model developed in this study was compared with the conventional Box-Jenkins autoregressive integrated moving
Dr. Adebiyi Ayodele Ariyo holds B.Sc. in Computer Science, MBA, M.Sc. and Ph.D in Management Information System. He is a lecturer in the department of Computer and Information Sciences, Covenant University, Ota. His research interest include the application of soft computing techniques to real life problems and e-commerce solutions.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 28,58 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Adebiyi AyodeleDr. Adebiyi Ayodele Ariyo holds B.Sc. in Computer Science, MBA, M.Sc. and Ph.D in Management Information System. He is a lecturer in the department of Computer and Information Sciences, Covenant University, Ota. His re. N° de réf. du vendeur 5495527
Quantité disponible : Plus de 20 disponibles
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA79638465090946
Quantité disponible : 1 disponible(s)