Transparent conducting oxides (TCO's) have drawn great attention owing to their high electrical conductivity (10,000 S/cm) and high transparency (80-90%) in the visible region. This combination of properties makes them suitable for a number of applications such as solar cells, LCD display, OPV devices and even transparent electronics. The TCO nanostructures even showed better transparent contact than TCO thin film. High surface-to-volume ratio of nanostructures have demonstrated high sensitivity towards various target gases like NH3, CO, H2 and H2S and for NO2, which is one of the most dangerous air pollutants that causes acid rain and holes in ozone layer. To realize these applications, a basic understanding of the growth mechanism of nanostructures is a key requirement. Here, the main focus is given for tunable growth of indium oxide nanostructures and their applications. The indium metal filled indium oxide nanotube based nanorocket and indium mass transport in indium oxide nanotubes is demonstrated with the help of high-resolution transmission electron microscopy.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Transparent conducting oxides (TCO's) have drawn great attention owing to their high electrical conductivity (10,000 S/cm) and high transparency (80-90%) in the visible region. This combination of properties makes them suitable for a number of applications such as solar cells, LCD display, OPV devices and even transparent electronics. The TCO nanostructures even showed better transparent contact than TCO thin film. High surface-to-volume ratio of nanostructures have demonstrated high sensitivity towards various target gases like NH3, CO, H2 and H2S and for NO2, which is one of the most dangerous air pollutants that causes acid rain and holes in ozone layer. To realize these applications, a basic understanding of the growth mechanism of nanostructures is a key requirement. Here, the main focus is given for tunable growth of indium oxide nanostructures and their applications. The indium metal filled indium oxide nanotube based nanorocket and indium mass transport in indium oxide nanotubes is demonstrated with the help of high-resolution transmission electron microscopy.
Mukesh Kumar received his Ph.D. in growth, engineering and application of oxide nanostructures from IIT Delhi, India. He worked as post-doctor at Colorado School of Mines Golden CO (USA). His research area includes development of next generation TCO for flexible solar cell application, thin film solar and scanning probe microscopy.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 28,98 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kumar MukeshMukesh Kumar received his Ph.D. in growth, engineering and application of oxide nanostructures from IIT Delhi, India. He worked as post-doctor at Colorado School of Mines Golden CO (USA). His research area includes develo. N° de réf. du vendeur 5497144
Quantité disponible : Plus de 20 disponibles
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA79638465321776
Quantité disponible : 1 disponible(s)