Many real-world problems involve two types of problem difficulty: I) multiple, conflicting objectives and II) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Pareto-optimal. In the absence of preference information, none of the corresponding trade-offs can be said to be better than the others. On the other hand, the search space can be too large and too complex to be solved by exact methods. Thus, efficient optimization strategies are required that are able to deal with both difficulties. Evolutionary algorithms possess several characteristics that are desirable for this kind of problem and make them preferable to classical optimization methods. In fact, various evolutionary approaches to multiobjective optimization have been proposed since 1985, capable of searching for multiple Pareto optimal solutions concurrently in a single simulation run. The subject of this work is the improvement of multiobjective evolutionary algorithms and their application to engineering problems.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Many real-world problems involve two types of problem difficulty: I) multiple, conflicting objectives and II) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Pareto-optimal. In the absence of preference information, none of the corresponding trade-offs can be said to be better than the others. On the other hand, the search space can be too large and too complex to be solved by exact methods. Thus, efficient optimization strategies are required that are able to deal with both difficulties. Evolutionary algorithms possess several characteristics that are desirable for this kind of problem and make them preferable to classical optimization methods. In fact, various evolutionary approaches to multiobjective optimization have been proposed since 1985, capable of searching for multiple Pareto optimal solutions concurrently in a single simulation run. The subject of this work is the improvement of multiobjective evolutionary algorithms and their application to engineering problems.
A. A. Mosua obtained his PhD in in engineering mathematics from faculty of engineering, Menoufia University, Egypt. He is currently a Lecturer in the Basic Engineering Sciences, Faculty of Engineering, Menoufia University. His research interests are evolutionary multiobjective optimization, mathematical programming, artificial intelligence methods.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Mousa Abd Allah A.A. A. Mosua obtained his PhD in in engineering mathematics from faculty of engineering, Menoufia University, Egypt. He is currently a Lecturer in the Basic Engineering Sciences, Faculty of Engineering, Menoufia Univ. N° de réf. du vendeur 5498323
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Many real-world problems involve two types of problem difficulty: I) multiple, conflicting objectives and II) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Pareto-optimal. In the absence of preference information, none of the corresponding trade-offs can be said to be better than the others. On the other hand, the search space can be too large and too complex to be solved by exact methods. Thus, efficient optimization strategies are required that are able to deal with both difficulties. Evolutionary algorithms possess several characteristics that are desirable for this kind of problem and make them preferable to classical optimization methods. In fact, various evolutionary approaches to multiobjective optimization have been proposed since 1985, capable of searching for multiple Pareto optimal solutions concurrently in a single simulation run. The subject of this work is the improvement of multiobjective evolutionary algorithms and their application to engineering problems. N° de réf. du vendeur 9783846548899
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Many real-world problems involve two types of problem difficulty: I) multiple, conflicting objectives and II) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Pareto-optimal. In the absence of preference information, none of the corresponding trade-offs can be said to be better than the others. On the other hand, the search space can be too large and too complex to be solved by exact methods. Thus, efficient optimization strategies are required that are able to deal with both difficulties. Evolutionary algorithms possess several characteristics that are desirable for this kind of problem and make them preferable to classical optimization methods. In fact, various evolutionary approaches to multiobjective optimization have been proposed since 1985, capable of searching for multiple Pareto optimal solutions concurrently in a single simulation run. The subject of this work is the improvement of multiobjective evolutionary algorithms and their application to engineering problems. 144 pp. Englisch. N° de réf. du vendeur 9783846548899
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Many real-world problems involve two types of problem difficulty: I) multiple, conflicting objectives and II) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Pareto-optimal. In the absence of preference information, none of the corresponding trade-offs can be said to be better than the others. On the other hand, the search space can be too large and too complex to be solved by exact methods. Thus, efficient optimization strategies are required that are able to deal with both difficulties. Evolutionary algorithms possess several characteristics that are desirable for this kind of problem and make them preferable to classical optimization methods. In fact, various evolutionary approaches to multiobjective optimization have been proposed since 1985, capable of searching for multiple Pareto optimal solutions concurrently in a single simulation run. The subject of this work is the improvement of multiobjective evolutionary algorithms and their application to engineering problems.Books on Demand GmbH, Überseering 33, 22297 Hamburg 144 pp. Englisch. N° de réf. du vendeur 9783846548899
Quantité disponible : 2 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 144 pages. 8.66x5.91x0.33 inches. In Stock. N° de réf. du vendeur __3846548898
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 144 pages. 8.66x5.91x0.33 inches. In Stock. N° de réf. du vendeur 3846548898
Quantité disponible : 1 disponible(s)
Vendeur : dsmbooks, Liverpool, Royaume-Uni
paperback. Etat : New. New. book. N° de réf. du vendeur D8S0-3-M-3846548898-6
Quantité disponible : 1 disponible(s)