Since human genome studies have brought out a huge number of biosequence data, computational techniques have been developed preventing the vast of cost and time in the management process of these data. In this book, new approaches on clustering and classification methods in biosequence –protein, enzyme sequences– analysis are studied. Classification is a supervised learning algorithm that aims at categorizing or assigning class labels to a pattern set under the supervision of an expert. Therefore, the prediction of subcellular location of proteins and the classification of enzymes have been solved via data mining techniques. Clustering is an unsupervised learning technique that aims at decomposing a given set of elements into clusters based on similarity. Due to the fact that protein sequences have evolutionary relationship, all protein sequences can be organized in terms of their sequence similarity. A graphical illustration called phylogenetic tree can summarize the relationship between the protein sequences. The construction of phylogenetic tree is based on hierarchical clustering. Thus, we have proposed a new method as a linkage method in construction phylogenetic tree.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Since human genome studies have brought out a huge number of biosequence data, computational techniques have been developed preventing the vast of cost and time in the management process of these data. In this book, new approaches on clustering and classification methods in biosequence –protein, enzyme sequences– analysis are studied. Classification is a supervised learning algorithm that aims at categorizing or assigning class labels to a pattern set under the supervision of an expert. Therefore, the prediction of subcellular location of proteins and the classification of enzymes have been solved via data mining techniques. Clustering is an unsupervised learning technique that aims at decomposing a given set of elements into clusters based on similarity. Due to the fact that protein sequences have evolutionary relationship, all protein sequences can be organized in terms of their sequence similarity. A graphical illustration called phylogenetic tree can summarize the relationship between the protein sequences. The construction of phylogenetic tree is based on hierarchical clustering. Thus, we have proposed a new method as a linkage method in construction phylogenetic tree.
Dr. Kandemir-Cavas has obtained her PhD degree in Statistics in 2010. She is currently an Assistant Professor at the Department of Computer Science at Dokuz Eylül University in Izmir, Turkey.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kandemir-Cavas CaginDr. Kandemir-Cavas has obtained her PhD degree in Statistics in 2010. She is currently an Assistant Professor at the Department of Computer Science at Dokuz Eyluel University in Izmir, Turkey.Since human genome. N° de réf. du vendeur 5498515
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Since human genome studies have brought out a huge number of biosequence data, computational techniques have been developed preventing the vast of cost and time in the management process of these data. In this book, new approaches on clustering and classification methods in biosequence protein, enzyme sequences analysis are studied. Classification is a supervised learning algorithm that aims at categorizing or assigning class labels to a pattern set under the supervision of an expert. Therefore, the prediction of subcellular location of proteins and the classification of enzymes have been solved via data mining techniques. Clustering is an unsupervised learning technique that aims at decomposing a given set of elements into clusters based on similarity. Due to the fact that protein sequences have evolutionary relationship, all protein sequences can be organized in terms of their sequence similarity. A graphical illustration called phylogenetic tree can summarize the relationship between the protein sequences. The construction of phylogenetic tree is based on hierarchical clustering. Thus, we have proposed a new method as a linkage method in construction phylogenetic tree. N° de réf. du vendeur 9783846551837
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Since human genome studies have brought out a huge number of biosequence data, computational techniques have been developed preventing the vast of cost and time in the management process of these data. In this book, new approaches on clustering and classification methods in biosequence protein, enzyme sequences analysis are studied. Classification is a supervised learning algorithm that aims at categorizing or assigning class labels to a pattern set under the supervision of an expert. Therefore, the prediction of subcellular location of proteins and the classification of enzymes have been solved via data mining techniques. Clustering is an unsupervised learning technique that aims at decomposing a given set of elements into clusters based on similarity. Due to the fact that protein sequences have evolutionary relationship, all protein sequences can be organized in terms of their sequence similarity. A graphical illustration called phylogenetic tree can summarize the relationship between the protein sequences. The construction of phylogenetic tree is based on hierarchical clustering. Thus, we have proposed a new method as a linkage method in construction phylogenetic tree. 104 pp. Englisch. N° de réf. du vendeur 9783846551837
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Since human genome studies have brought out a huge number of biosequence data, computational techniques have been developed preventing the vast of cost and time in the management process of these data. In this book, new approaches on clustering and classification methods in biosequence ¿protein, enzyme sequences¿ analysis are studied. Classification is a supervised learning algorithm that aims at categorizing or assigning class labels to a pattern set under the supervision of an expert. Therefore, the prediction of subcellular location of proteins and the classification of enzymes have been solved via data mining techniques. Clustering is an unsupervised learning technique that aims at decomposing a given set of elements into clusters based on similarity. Due to the fact that protein sequences have evolutionary relationship, all protein sequences can be organized in terms of their sequence similarity. A graphical illustration called phylogenetic tree can summarize the relationship between the protein sequences. The construction of phylogenetic tree is based on hierarchical clustering. Thus, we have proposed a new method as a linkage method in construction phylogenetic tree.Books on Demand GmbH, Überseering 33, 22297 Hamburg 104 pp. Englisch. N° de réf. du vendeur 9783846551837
Quantité disponible : 2 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 104 pages. 8.66x5.91x0.24 inches. In Stock. N° de réf. du vendeur __384655183X
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 104 pages. 8.66x5.91x0.24 inches. In Stock. N° de réf. du vendeur 384655183X
Quantité disponible : 1 disponible(s)