Articles liés à Descriptive Modelling and Pattern Discovery in Spatial...

Descriptive Modelling and Pattern Discovery in Spatial Data Mining: Regionalisation and Association Rule Mining - Couverture souple

 
9783846592151: Descriptive Modelling and Pattern Discovery in Spatial Data Mining: Regionalisation and Association Rule Mining

Synopsis

The explosive growth of spatial data and the widespread use of spatial databases put emphasis on the extraction of interesting and implicit knowledge such as the spatial pattern or other significant mode not explicitly stored in the spatial databases. Knowledge discovery in large spatial database is important for the extraction of implicit knowledge. Spatial relations or other patterns are not explicitly stored in spatial database. Traditional Data mining techniques are not efficient and effective to mine the spatial data due to its unique features such as spatial dependency, heterogeneity, spatially aggregated data etc. Thus, new and efficient mining methods are needed to discover knowledge from large spatial databases. A descriptive modeling technique for georeferenced data is discussed and it is also used to solve the regionalization problem. Multi Level Multi Dimensional is an important aspect for Spatial Data. The Multi Level Multi Dimensional pattern discovery on spatial data is presented here. Mining the trajectory data or mobility data is an emerging area of research. The Trajectory data classifier which is based on the Nearest Neighbor is introduced.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

The explosive growth of spatial data and the widespread use of spatial databases put emphasis on the extraction of interesting and implicit knowledge such as the spatial pattern or other significant mode not explicitly stored in the spatial databases. Knowledge discovery in large spatial database is important for the extraction of implicit knowledge. Spatial relations or other patterns are not explicitly stored in spatial database. Traditional Data mining techniques are not efficient and effective to mine the spatial data due to its unique features such as spatial dependency, heterogeneity, spatially aggregated data etc. Thus, new and efficient mining methods are needed to discover knowledge from large spatial databases. A descriptive modeling technique for georeferenced data is discussed and it is also used to solve the regionalization problem. Multi Level Multi Dimensional is an important aspect for Spatial Data. The Multi Level Multi Dimensional pattern discovery on spatial data is presented here. Mining the trajectory data or mobility data is an emerging area of research. The Trajectory data classifier which is based on the Nearest Neighbor is introduced.

Biographie de l'auteur

Dr. Sharma received his Ph. D. degree from Pt. Ravishankar Shukla University, Raipur-India. Dr. Sharma is a DAAD Fellow and Former member of Knowledge Discovery Department, Fraunhofer IAIS St. Augustin Germany. He is working as Head Department of Computer Science and Engineering at Rungta College of Engineering and Technology, Bhilai (CG) India.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurLAP LAMBERT Academic Publishing
  • Date d'édition2011
  • ISBN 10 3846592153
  • ISBN 13 9783846592151
  • ReliureBroché
  • Langueanglais
  • Nombre de pages116
  • Coordonnées du fabricantnon disponible

Acheter D'occasion

Zustand: Hervorragend | Seiten:...
Afficher cet article
EUR 32,08

Autre devise

EUR 9,90 expédition depuis Allemagne vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 41,05

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Descriptive Modelling and Pattern Discovery in Spatial...

Image d'archives

Lokesh Kumar Sharma
ISBN 10 : 3846592153 ISBN 13 : 9783846592151
Ancien ou d'occasion Couverture souple

Vendeur : Buchpark, Trebbin, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Hervorragend. Zustand: Hervorragend | Seiten: 116 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 11605645/1

Contacter le vendeur

Acheter D'occasion

EUR 32,08
Autre devise
Frais de port : EUR 9,90
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Lokesh Kumar Sharma
ISBN 10 : 3846592153 ISBN 13 : 9783846592151
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Sharma Lokesh KumarDr. Sharma received his Ph. D. degree from Pt. Ravishankar Shukla University, Raipur-India. Dr. Sharma is a DAAD Fellow and Former member of Knowledge Discovery Department, Fraunhofer IAIS St. Augustin Germany. He . N° de réf. du vendeur 5501813

Contacter le vendeur

Acheter neuf

EUR 41,05
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Lokesh Kumar Sharma
ISBN 10 : 3846592153 ISBN 13 : 9783846592151
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The explosive growth of spatial data and the widespread use of spatial databases put emphasis on the extraction of interesting and implicit knowledge such as the spatial pattern or other significant mode not explicitly stored in the spatial databases. Knowledge discovery in large spatial database is important for the extraction of implicit knowledge. Spatial relations or other patterns are not explicitly stored in spatial database. Traditional Data mining techniques are not efficient and effective to mine the spatial data due to its unique features such as spatial dependency, heterogeneity, spatially aggregated data etc. Thus, new and efficient mining methods are needed to discover knowledge from large spatial databases. A descriptive modeling technique for georeferenced data is discussed and it is also used to solve the regionalization problem. Multi Level Multi Dimensional is an important aspect for Spatial Data. The Multi Level Multi Dimensional pattern discovery on spatial data is presented here. Mining the trajectory data or mobility data is an emerging area of research. The Trajectory data classifier which is based on the Nearest Neighbor is introduced. N° de réf. du vendeur 9783846592151

Contacter le vendeur

Acheter neuf

EUR 49
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Lokesh Kumar Sharma
ISBN 10 : 3846592153 ISBN 13 : 9783846592151
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The explosive growth of spatial data and the widespread use of spatial databases put emphasis on the extraction of interesting and implicit knowledge such as the spatial pattern or other significant mode not explicitly stored in the spatial databases. Knowledge discovery in large spatial database is important for the extraction of implicit knowledge. Spatial relations or other patterns are not explicitly stored in spatial database. Traditional Data mining techniques are not efficient and effective to mine the spatial data due to its unique features such as spatial dependency, heterogeneity, spatially aggregated data etc. Thus, new and efficient mining methods are needed to discover knowledge from large spatial databases. A descriptive modeling technique for georeferenced data is discussed and it is also used to solve the regionalization problem. Multi Level Multi Dimensional is an important aspect for Spatial Data. The Multi Level Multi Dimensional pattern discovery on spatial data is presented here. Mining the trajectory data or mobility data is an emerging area of research. The Trajectory data classifier which is based on the Nearest Neighbor is introduced. 116 pp. Englisch. N° de réf. du vendeur 9783846592151

Contacter le vendeur

Acheter neuf

EUR 49
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Lokesh Kumar Sharma
ISBN 10 : 3846592153 ISBN 13 : 9783846592151
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -The explosive growth of spatial data and the widespread use of spatial databases put emphasis on the extraction of interesting and implicit knowledge such as the spatial pattern or other significant mode not explicitly stored in the spatial databases. Knowledge discovery in large spatial database is important for the extraction of implicit knowledge. Spatial relations or other patterns are not explicitly stored in spatial database. Traditional Data mining techniques are not efficient and effective to mine the spatial data due to its unique features such as spatial dependency, heterogeneity, spatially aggregated data etc. Thus, new and efficient mining methods are needed to discover knowledge from large spatial databases. A descriptive modeling technique for georeferenced data is discussed and it is also used to solve the regionalization problem. Multi Level Multi Dimensional is an important aspect for Spatial Data. The Multi Level Multi Dimensional pattern discovery on spatial data is presented here. Mining the trajectory data or mobility data is an emerging area of research. The Trajectory data classifier which is based on the Nearest Neighbor is introduced.Books on Demand GmbH, Überseering 33, 22297 Hamburg 116 pp. Englisch. N° de réf. du vendeur 9783846592151

Contacter le vendeur

Acheter neuf

EUR 49
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Lokesh Kumar Sharma
ISBN 10 : 3846592153 ISBN 13 : 9783846592151
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 116 pages. 8.58x5.83x0.31 inches. In Stock. N° de réf. du vendeur 3846592153

Contacter le vendeur

Acheter neuf

EUR 102,24
Autre devise
Frais de port : EUR 11,68
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier