Current research in the field of limit analysis is focussing on the development of numerical tools which are sufficiently efficient and robust to be used in engineering practice. This places demands on the numerical discretisation strategy adopted as well as on the mathematical programming tools applied, which are the key ingredients of a typical computational limit analysis procedure. In this research, the Element-Free Galerkin (EFG) discretisation strategy is used to approximate the displacement and moment fields in plate and slab problems, and second-order cone programming (SOCP) is used to solve the resulting discretised formulations. A numerical procedure using the EFG method and second-order cone programming for the kinematic limit analysis problem was developed first. The moving least squares technique was used in combination with a stabilised conforming nodal integration scheme, both to keep the size of the optimisation problem small and to provide stable and accurate solutions. The formulation was expressed as a problem of minimizing a sum of Euclidean norms, which was then transformed into a form suitable for solution using SOCP.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Current research in the field of limit analysis is focussing on the development of numerical tools which are sufficiently efficient and robust to be used in engineering practice. This places demands on the numerical discretisation strategy adopted as well as on the mathematical programming tools applied, which are the key ingredients of a typical computational limit analysis procedure. In this research, the Element-Free Galerkin (EFG) discretisation strategy is used to approximate the displacement and moment fields in plate and slab problems, and second-order cone programming (SOCP) is used to solve the resulting discretised formulations. A numerical procedure using the EFG method and second-order cone programming for the kinematic limit analysis problem was developed first. The moving least squares technique was used in combination with a stabilised conforming nodal integration scheme, both to keep the size of the optimisation problem small and to provide stable and accurate solutions. The formulation was expressed as a problem of minimizing a sum of Euclidean norms, which was then transformed into a form suitable for solution using SOCP.
Dr Canh Le is currently employed as a Lecturer in the Department of Civil Engineering at the International University. He worked as a Postdoctoral Research Associate after obtaining his PhD in Computational Mechanics from the University of Sheffield in 2010. His research interests lie in the field of computational structural mechanics.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 28,88 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Le CanhDr Canh Le is currently employed as a Lecturer in the Department of Civil Engineering at the International University. He worked as a Postdoctoral Research Associate after obtaining his PhD in Computational Mechanics from the . N° de réf. du vendeur 5502045
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Current research in the field of limit analysis is focussing on the development of numerical tools which are sufficiently efficient and robust to be used in engineering practice. This places demands on the numerical discretisation strategy adopted as well as on the mathematical programming tools applied, which are the key ingredients of a typical computational limit analysis procedure. In this research, the Element-Free Galerkin (EFG) discretisation strategy is used to approximate the displacement and moment fields in plate and slab problems, and second-order cone programming (SOCP) is used to solve the resulting discretised formulations. A numerical procedure using the EFG method and second-order cone programming for the kinematic limit analysis problem was developed first. The moving least squares technique was used in combination with a stabilised conforming nodal integration scheme, both to keep the size of the optimisation problem small and to provide stable and accurate solutions. The formulation was expressed as a problem of minimizing a sum of Euclidean norms, which was then transformed into a form suitable for solution using SOCP. N° de réf. du vendeur 9783846595336
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Current research in the field of limit analysis is focussing on the development of numerical tools which are sufficiently efficient and robust to be used in engineering practice. This places demands on the numerical discretisation strategy adopted as well as on the mathematical programming tools applied, which are the key ingredients of a typical computational limit analysis procedure. In this research, the Element-Free Galerkin (EFG) discretisation strategy is used to approximate the displacement and moment fields in plate and slab problems, and second-order cone programming (SOCP) is used to solve the resulting discretised formulations. A numerical procedure using the EFG method and second-order cone programming for the kinematic limit analysis problem was developed first. The moving least squares technique was used in combination with a stabilised conforming nodal integration scheme, both to keep the size of the optimisation problem small and to provide stable and accurate solutions. The formulation was expressed as a problem of minimizing a sum of Euclidean norms, which was then transformed into a form suitable for solution using SOCP. 200 pp. Englisch. N° de réf. du vendeur 9783846595336
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Current research in the field of limit analysis is focussing on the development of numerical tools which are sufficiently efficient and robust to be used in engineering practice. This places demands on the numerical discretisation strategy adopted as well as on the mathematical programming tools applied, which are the key ingredients of a typical computational limit analysis procedure. In this research, the Element-Free Galerkin (EFG) discretisation strategy is used to approximate the displacement and moment fields in plate and slab problems, and second-order cone programming (SOCP) is used to solve the resulting discretised formulations. A numerical procedure using the EFG method and second-order cone programming for the kinematic limit analysis problem was developed first. The moving least squares technique was used in combination with a stabilised conforming nodal integration scheme, both to keep the size of the optimisation problem small and to provide stable and accurate solutions. The formulation was expressed as a problem of minimizing a sum of Euclidean norms, which was then transformed into a form suitable for solution using SOCP.Books on Demand GmbH, Überseering 33, 22297 Hamburg 200 pp. Englisch. N° de réf. du vendeur 9783846595336
Quantité disponible : 1 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA75838465953306
Quantité disponible : 1 disponible(s)