This thesis tackles three major challenges in diffusion tensor imaging analysis with statistical methodologies. We firstly develop a novel Bayesian multi-tensor model with reparameterisation for capturing water diffusion at voxels with one or more distinct fibre orientations. A mixture Markov chain Monte Carlo (MCMC) algorithm is then developed to study the uncertainty of fibre orientations. Secondly, we apply non-Euclidean statistics to define the sample mean of diffusion tensor data which are employed for tensor field processing. In particular, Procrustes analysis, a powerful statistical shape analysis tool, is compared with the Log-Euclidean, Riemannian, Cholesky and power Euclidean approaches. A new anisotropy measure, Procrustes anisotropy, is defined. We finally use directional statistics to design uniformly distributed diffusion gradient direction schemes with different numbers of directions. All methods are illustrated through synthetic examples as well as white matter tractography of a healthy human brain.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This thesis tackles three major challenges in diffusion tensor imaging analysis with statistical methodologies. We firstly develop a novel Bayesian multi-tensor model with reparameterisation for capturing water diffusion at voxels with one or more distinct fibre orientations. A mixture Markov chain Monte Carlo (MCMC) algorithm is then developed to study the uncertainty of fibre orientations. Secondly, we apply non-Euclidean statistics to define the sample mean of diffusion tensor data which are employed for tensor field processing. In particular, Procrustes analysis, a powerful statistical shape analysis tool, is compared with the Log-Euclidean, Riemannian, Cholesky and power Euclidean approaches. A new anisotropy measure, Procrustes anisotropy, is defined. We finally use directional statistics to design uniformly distributed diffusion gradient direction schemes with different numbers of directions. All methods are illustrated through synthetic examples as well as white matter tractography of a healthy human brain.
Dr. Diwei Zhou received her PhD in Statistics from University of Nottingham (2010). She worked as a Marie Curie fellow for a medical image analysis project in School of Mathematical Sciences in University of Nottingham (2006 - 2009) . Now she is a lecturer in Statistics in University of Wolverhampton.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Apr0316110134377
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783847307877
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783847307877
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783847307877
Quantité disponible : Plus de 20 disponibles
Vendeur : Phatpocket Limited, Waltham Abbey, HERTS, Royaume-Uni
Etat : Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. N° de réf. du vendeur Z1-V-026-02038
Quantité disponible : 5 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783847307877_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This thesis tackles three major challenges in diffusion tensor imaging analysis with statistical methodologies. We firstly develop a novel Bayesian multi-tensor model with reparameterisation for capturing water diffusion at voxels with one or more distinct fibre orientations. A mixture Markov chain Monte Carlo (MCMC) algorithm is then developed to study the uncertainty of fibre orientations. Secondly, we apply non-Euclidean statistics to define the sample mean of diffusion tensor data which are employed for tensor field processing. In particular, Procrustes analysis, a powerful statistical shape analysis tool, is compared with the Log-Euclidean, Riemannian, Cholesky and power Euclidean approaches. A new anisotropy measure, Procrustes anisotropy, is defined. We finally use directional statistics to design uniformly distributed diffusion gradient direction schemes with different numbers of directions. All methods are illustrated through synthetic examples as well as white matter tractography of a healthy human brain. 200 pp. Englisch. N° de réf. du vendeur 9783847307877
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Zhou DiweiDr. Diwei Zhou received her PhD in Statistics from University of Nottingham (2010). She worked as a Marie Curie fellow for a medical image analysis project in School of Mathematical Sciences in University of Nottingham (200. N° de réf. du vendeur 5509013
Quantité disponible : Plus de 20 disponibles
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Statistical Analysis of Diffusion Tensor Imaging | Statistical Methodologies for Medical Image Analysis | Diwei Zhou | Taschenbuch | 200 S. | Englisch | 2011 | LAP LAMBERT Academic Publishing | EAN 9783847307877 | Verantwortliche Person für die EU: OmniScriptum GmbH & Co. KG, Bahnhofstr. 28, 66111 Saarbrücken, info[at]akademikerverlag[dot]de | Anbieter: preigu Print on Demand. N° de réf. du vendeur 106702629
Quantité disponible : 5 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This thesis tackles three major challenges in diffusion tensor imaging analysis with statistical methodologies. We firstly develop a novel Bayesian multi-tensor model with reparameterisation for capturing water diffusion at voxels with one or more distinct fibre orientations. A mixture Markov chain Monte Carlo (MCMC) algorithm is then developed to study the uncertainty of fibre orientations. Secondly, we apply non-Euclidean statistics to define the sample mean of diffusion tensor data which are employed for tensor field processing. In particular, Procrustes analysis, a powerful statistical shape analysis tool, is compared with the Log-Euclidean, Riemannian, Cholesky and power Euclidean approaches. A new anisotropy measure, Procrustes anisotropy, is defined. We finally use directional statistics to design uniformly distributed diffusion gradient direction schemes with different numbers of directions. All methods are illustrated through synthetic examples as well as white matter tractography of a healthy human brain.Books on Demand GmbH, Überseering 33, 22297 Hamburg 200 pp. Englisch. N° de réf. du vendeur 9783847307877
Quantité disponible : 1 disponible(s)