Articles liés à Quasi-spectral Finite Difference Methods - Convergence...

Quasi-spectral Finite Difference Methods - Convergence Analysis and Application to Nonlinear Optical Pulse Propagation - Couverture souple

 
9783869556857: Quasi-spectral Finite Difference Methods - Convergence Analysis and Application to Nonlinear Optical Pulse Propagation
  • ÉditeurCuvillier Verlag
  • Date d'édition2011
  • ISBN 10 3869556854
  • ISBN 13 9783869556857
  • ReliureBroché
  • Langueanglais
  • Nombre de pages240

Acheter neuf

Afficher cet article

EUR 23 expédition depuis Allemagne vers Etats-Unis

Destinations, frais et délais

Résultats de recherche pour Quasi-spectral Finite Difference Methods - Convergence...

Image fournie par le vendeur

Tristan Kremp
Edité par Cuvillier Mrz 2011, 2011
ISBN 10 : 3869556854 ISBN 13 : 9783869556857
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The doctoral thesis ¿Quasi-spectral finite difference methods: Convergence analysis and application to nonlinear optical pulse propagation¿ by Tristan Kremp addresses the theory and application of so-called quasi-spectral finite differences. Contrary to the common Taylor approach, these are by construction exact for trigonometric instead of algebraic polynomials. With any fixed discretization spacing, this allows for a higher accuracy, e.g., when differencing functions that have a band-pass like Fourier spectrum.In this dissertation, the convergence of such quasi-spectral finite differences is proven for the first time. It is shown that the highest possible order of convergence is the same as for the Taylor approach, i.e., it is basically identical to the total number of summands in the finite difference. This order is achieved if all frequencies, for which the quasi-spectral finite difference is exact, vanish sufficiently fast in comparison to the discretization spacing. This condition can be easily incorporated in the finite difference weights construction, which can be achieved by spectral interpolation or least-squares optimization, respectively. Employing previously unknown Haar (or Chebyshev) systems that consist of combinations of algebraic and trigonometric monomials, the equivalence of both methods of construction is proven. In a semidiscretization framework, these finite differences are, for the first time, combined with exponential split-step integrators for an efficient solution of linear or nonlinear evolution equations. It is shown that a simple modification of the common symmetric split-step integrator guarantees its second-order convergence even in the presence of general nonlinearities. An important example of such a partial differential equation is the nonlinear Schrödinger equation (NLSE). In contrast to the standard literature, the NLSE is derived here directly from Maxwell¿s equations, without the common assumption that the second spatial derivative in the direction of the propagation can be neglected, and without the assumption that the multiplicative nonlinear term behaves as a constant with respect to the Fourier transformation. A practically relevant application is the propagation of wavelength division multiplexing (WDM) signals in optical fibers. Compared to other semidiscretization techniques such as finite elements, wavelet collocation and the pseudo-spectral methods (split-step Fourier method) that are mostly employed by the industry, the quasi-spectral finite differences allow, at the same accuracy, for a substantial reduction of the computation time. 240 pp. Englisch. N° de réf. du vendeur 9783869556857

Contacter le vendeur

Acheter neuf

EUR 36
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Tristan Kremp
Edité par Cuvillier, 2011
ISBN 10 : 3869556854 ISBN 13 : 9783869556857
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The doctoral thesis ¿Quasi-spectral finite difference methods: Convergence analysis and application to nonlinear optical pulse propagation¿ by Tristan Kremp addresses the theory and application of so-called quasi-spectral finite differences. Contrary to the common Taylor approach, these are by construction exact for trigonometric instead of algebraic polynomials. With any fixed discretization spacing, this allows for a higher accuracy, e.g., when differencing functions that have a band-pass like Fourier spectrum.In this dissertation, the convergence of such quasi-spectral finite differences is proven for the first time. It is shown that the highest possible order of convergence is the same as for the Taylor approach, i.e., it is basically identical to the total number of summands in the finite difference. This order is achieved if all frequencies, for which the quasi-spectral finite difference is exact, vanish sufficiently fast in comparison to the discretization spacing. This condition can be easily incorporated in the finite difference weights construction, which can be achieved by spectral interpolation or least-squares optimization, respectively. Employing previously unknown Haar (or Chebyshev) systems that consist of combinations of algebraic and trigonometric monomials, the equivalence of both methods of construction is proven. In a semidiscretization framework, these finite differences are, for the first time, combined with exponential split-step integrators for an efficient solution of linear or nonlinear evolution equations. It is shown that a simple modification of the common symmetric split-step integrator guarantees its second-order convergence even in the presence of general nonlinearities. An important example of such a partial differential equation is the nonlinear Schrödinger equation (NLSE). In contrast to the standard literature, the NLSE is derived here directly from Maxwell¿s equations, without the common assumption that the second spatial derivative in the direction of the propagation can be neglected, and without the assumption that the multiplicative nonlinear term behaves as a constant with respect to the Fourier transformation. A practically relevant application is the propagation of wavelength division multiplexing (WDM) signals in optical fibers. Compared to other semidiscretization techniques such as finite elements, wavelet collocation and the pseudo-spectral methods (split-step Fourier method) that are mostly employed by the industry, the quasi-spectral finite differences allow, at the same accuracy, for a substantial reduction of the computation time. N° de réf. du vendeur 9783869556857

Contacter le vendeur

Acheter neuf

EUR 36
Autre devise
Frais de port : EUR 29,57
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Kremp, Tristan
Edité par Cuvillier Verlag, 2011
ISBN 10 : 3869556854 ISBN 13 : 9783869556857
Neuf Couverture souple

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 128045978

Contacter le vendeur

Acheter neuf

EUR 36
Autre devise
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier