Articles liés à Active Learning for Recommender Systems

Active Learning for Recommender Systems - Couverture souple

 
9783954046928: Active Learning for Recommender Systems

Synopsis

Nowadays we are living in an era that is overloaded with information. Decision-making in this environment can sometimes become a nightmare. There are too many choices and we simply cannot explore them all. Therefore, it would be really helpful to have a system to help us to find the right choice. Such systems, which learn user preferences and provide personalized recommendations to them are called Recommender Systems. Evidently, the performance of recommender systems depends on the amount of information that users provide regarding items, most often in the form of ratings. This problem is amplified for new users because they have not provided any rating, which impacts negatively on the quality of generated recommendations. This problem is called new user problem or cold-start problem. A simple and effective way to overcome this problem, is by posing queries to new users so that they express their preferences about selected items, e.g. by rating them. Nevertheless, the selection of items must take into consideration that users are not willing to answer a lot of such queries. To address this problem, active learning methods have been proposed to acquire the most informative ratings, i.e ratings from users that will help most in determining their interests. The aim of this thesis is to take inspiration from the literature of active learning for machine learning and develop new methods for the new user problem in recommender systems. In the recommender system context, new users play the role of the Oracle and provide labels (ratings) to the queries (items). In this approach, we will take into consideration that although there are no data for new users, but there is abundant data for existing users. Such additional data can help us to develop scalable and accurate active learning methods for the new user problem in recommender systems. The thesis consists of two parts. In the first part, to be consistent with the settings of active learning in machine learning and the re

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

Zustand: Hervorragend | Seiten:...
Afficher cet article
EUR 18,88

Autre devise

EUR 9,90 expédition depuis Allemagne vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 25,89

Autre devise

EUR 4,60 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Résultats de recherche pour Active Learning for Recommender Systems

Image d'archives

Rasoul Karimi
Edité par Cuvillier, 2014
ISBN 10 : 395404692X ISBN 13 : 9783954046928
Ancien ou d'occasion Couverture souple

Vendeur : Buchpark, Trebbin, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Hervorragend. Zustand: Hervorragend | Seiten: 152 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 24960343/1

Contacter le vendeur

Acheter D'occasion

EUR 18,88
Autre devise
Frais de port : EUR 9,90
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Karimi, Rasoul
Edité par Cuvillier, 2014
ISBN 10 : 395404692X ISBN 13 : 9783954046928
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783954046928_new

Contacter le vendeur

Acheter neuf

EUR 25,89
Autre devise
Frais de port : EUR 4,60
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Karimi, Rasoul
Edité par Cuvillier, 2014
ISBN 10 : 395404692X ISBN 13 : 9783954046928
Neuf PAP
impression à la demande

Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783954046928

Contacter le vendeur

Acheter neuf

EUR 31,49
Autre devise
Frais de port : EUR 1,06
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Karimi, Rasoul
Edité par Cuvillier 2014-04, 2014
ISBN 10 : 395404692X ISBN 13 : 9783954046928
Neuf PF

Vendeur : Chiron Media, Wallingford, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

PF. Etat : New. N° de réf. du vendeur 6666-IUK-9783954046928

Contacter le vendeur

Acheter neuf

EUR 21,71
Autre devise
Frais de port : EUR 10,93
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image d'archives

Karimi, Rasoul
Edité par Cuvillier, 2014
ISBN 10 : 395404692X ISBN 13 : 9783954046928
Neuf PAP
impression à la demande

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9783954046928

Contacter le vendeur

Acheter neuf

EUR 28,05
Autre devise
Frais de port : EUR 4,91
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Karimi, Rasoul
Edité par Cuvillier Verlag, 2014
ISBN 10 : 395404692X ISBN 13 : 9783954046928
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. &Uumlber den AutorrnrnRasoul Karimi was born in 1980 in Tehran. He studied computer engineering and got his master degree in 2005 from the University of Tehran. He started his PhD in 2009 in Information System and Machine Learning Lab (ISMLL), . N° de réf. du vendeur 70661889

Contacter le vendeur

Acheter neuf

EUR 25,09
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Karimi, Rasoul
Edité par Cuvillier, 2014
ISBN 10 : 395404692X ISBN 13 : 9783954046928
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9783954046928

Contacter le vendeur

Acheter neuf

EUR 30,71
Autre devise
Frais de port : EUR 6,82
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Rasoul Karimi
Edité par Cuvillier, 2014
ISBN 10 : 395404692X ISBN 13 : 9783954046928
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Nowadays we are living in an era that is overloaded with information. Decision-making in this environment can sometimes become a nightmare. There are too many choices and we simply cannot explore them all. Therefore, it would be really helpful to have a system to help us to find the right choice. Such systems, which learn user preferences and provide personalized recommendations to them are called Recommender Systems.Evidently, the performance of recommender systems depends on the amount of information that users provide regarding items, most often in the form of ratings. This problem is amplified for new users because they have not provided any rating, which impacts negatively on the quality of generated recommendations. This problem is called new user problem or cold-start problem. A simple and effective way to overcome this problem, is by posing queries to new users so that they express their preferences about selected items, e.g. by rating them. Nevertheless, the selection of items must take into consideration that users are not willing to answer a lot of such queries. To address this problem, active learning methods have been proposed to acquire the most informative ratings, i.e ratings from users that will help most in determining their interests.The aim of this thesis is to take inspiration from the literature of active learning for machine learning and develop new methods for the new user problem in recommender systems. In the recommender system context, new users play the role of the Oracle and provide labels (ratings) to the queries (items). In this approach, we will take into consideration that although there are no data for new users, but there is abundant data for existing users. Such additional data can help us to develop scalable and accurate active learning methods for the new user problem in recommender systems.The thesis consists of two parts. In the first part, to be consistent with the settings of active learning in machine learning and the related works on the new user problem in recommender system, it is assumed that the new user is always able to rate the queried items. Next, this constraint is relaxed and new users are allowed not to rate the items.Most of the developed active learning methods exploit the characteristics matrix factorization because nevertheless, recent research (especially as has been demonstrated during the Netflix challenge) indicates that matrix factorization is a superior prediction model for recommender systems compared to other approaches. N° de réf. du vendeur 9783954046928

Contacter le vendeur

Acheter neuf

EUR 27,60
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Rasoul Karimi
Edité par Cuvillier Apr 2014, 2014
ISBN 10 : 395404692X ISBN 13 : 9783954046928
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Nowadays we are living in an era that is overloaded with information. Decision-making in this environment can sometimes become a nightmare. There are too many choices and we simply cannot explore them all. Therefore, it would be really helpful to have a system to help us to find the right choice. Such systems, which learn user preferences and provide personalized recommendations to them are called Recommender Systems.Evidently, the performance of recommender systems depends on the amount of information that users provide regarding items, most often in the form of ratings. This problem is amplified for new users because they have not provided any rating, which impacts negatively on the quality of generated recommendations. This problem is called new user problem or cold-start problem. A simple and effective way to overcome this problem, is by posing queries to new users so that they express their preferences about selected items, e.g. by rating them. Nevertheless, the selection of items must take into consideration that users are not willing to answer a lot of such queries. To address this problem, active learning methods have been proposed to acquire the most informative ratings, i.e ratings from users that will help most in determining their interests.The aim of this thesis is to take inspiration from the literature of active learning for machine learning and develop new methods for the new user problem in recommender systems. In the recommender system context, new users play the role of the Oracle and provide labels (ratings) to the queries (items). In this approach, we will take into consideration that although there are no data for new users, but there is abundant data for existing users. Such additional data can help us to develop scalable and accurate active learning methods for the new user problem in recommender systems.The thesis consists of two parts. In the first part, to be consistent with the settings of active learning in machine learning and the related works on the new user problem in recommender system, it is assumed that the new user is always able to rate the queried items. Next, this constraint is relaxed and new users are allowed not to rate the items.Most of the developed active learning methods exploit the characteristics matrix factorization because nevertheless, recent research (especially as has been demonstrated during the Netflix challenge) indicates that matrix factorization is a superior prediction model for recommender systems compared to other approaches. 152 pp. Englisch. N° de réf. du vendeur 9783954046928

Contacter le vendeur

Acheter neuf

EUR 27,60
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Rasoul Karimi
ISBN 10 : 395404692X ISBN 13 : 9783954046928
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -Nowadays we are living in an era that is overloaded with information. Decision-making in this environment can sometimes become a nightmare. There are too many choices and we simply cannot explore them all. Therefore, it would be really helpful to have a system to help us to find the right choice. Such systems, which learn user preferences and provide personalized recommendations to them are called Recommender Systems.Evidently, the performance of recommender systems depends on the amount of information that users provide regarding items, most often in the form of ratings. This problem is amplified for new users because they have not provided any rating, which impacts negatively on the quality of generated recommendations. This problem is called new user problem or cold-start problem. A simple and effective way to overcome this problem, is by posing queries to new users so that they express their preferences about selected items, e.g. by rating them. Nevertheless, the selection of items must take into consideration that users are not willing to answer a lot of such queries. To address this problem, active learning methods have been proposed to acquire the most informative ratings, i.e ratings from users that will help most in determining their interests.The aim of this thesis is to take inspiration from the literature of active learning for machine learning and develop new methods for the new user problem in recommender systems. In the recommender system context, new users play the role of the Oracle and provide labels (ratings) to the queries (items). In this approach, we will take into consideration that although there are no data for new users, but there is abundant data for existing users. Such additional data can help us to develop scalable and accurate active learning methods for the new user problem in recommender systems.The thesis consists of two parts. In the first part, to be consistent with the settings of active learning in machine learning and the related works on the new user problem in recommender system, it is assumed that the new user is always able to rate the queried items. Next, this constraint is relaxed and new users are allowed not to rate the items.Most of the developed active learning methods exploit the characteristics matrix factorization because nevertheless, recent research (especially as has been demonstrated during the Netflix challenge) indicates that matrix factorization is a superior prediction model for recommender systems compared to other approaches.Books on Demand GmbH, Überseering 33, 22297 Hamburg 152 pp. Englisch. N° de réf. du vendeur 9783954046928

Contacter le vendeur

Acheter neuf

EUR 27,60
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

There are 2 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre