Articles liés à Wald–Wolfowitz Runs Test: Wald–Wolfowitz...

Wald–Wolfowitz Runs Test: Wald–Wolfowitz Runs Test, Non-parametric Statistics, Statistical Hypothesis Testing, Independence, Probability Theory, Random Variable - Couverture souple

 
9786130334307: Wald–Wolfowitz Runs Test: Wald–Wolfowitz Runs Test, Non-parametric Statistics, Statistical Hypothesis Testing, Independence, Probability Theory, Random Variable

L'édition de cet ISBN n'est malheureusement plus disponible.

Synopsis

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. The runs test also called Wald–Wolfowitz test is a non-parametric statistical test that checks a randomness hypothesis for a two-valued data sequence. More precisely, it can be used to test the hypothesis that the elements of the sequence are mutually independent. A run" of a sequence is a maximal non-empty segment of the sequence consisting of adjacent equal elements. These parameters do not depend on the "fairness" of the process generating the elements of the sequence in the sense that +''s and −''s must have equal probabilities, but only on the assumption that the elements are independent and identically distributed. If there are too many runs more or less than expected, the hypothesis of statistical independence of the elements may be rejected."

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. The runs test also called Wald–Wolfowitz test is a non-parametric statistical test that checks a randomness hypothesis for a two-valued data sequence. More precisely, it can be used to test the hypothesis that the elements of the sequence are mutually independent. A run" of a sequence is a maximal non-empty segment of the sequence consisting of adjacent equal elements. These parameters do not depend on the "fairness" of the process generating the elements of the sequence in the sense that +''s and −''s must have equal probabilities, but only on the assumption that the elements are independent and identically distributed. If there are too many runs more or less than expected, the hypothesis of statistical independence of the elements may be rejected."

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

(Aucun exemplaire disponible)

Chercher:



Créez une demande

Vous ne trouvez pas le livre que vous recherchez ? Nous allons poursuivre vos recherches. Si l'un de nos libraires l'ajoute aux offres sur AbeBooks, nous vous le ferons savoir !

Créez une demande