Articles liés à Four-Vertex Theorem: Four-vertex theorem, Curvature,...

Four-Vertex Theorem: Four-vertex theorem, Curvature, Plane curve, If and only if, Osculating circle, N-sphere, Winding number, Fundamental theorem ... Adolf Kneser, Continuous function - Couverture souple

 
9786130682132: Four-Vertex Theorem: Four-vertex theorem, Curvature, Plane curve, If and only if, Osculating circle, N-sphere, Winding number, Fundamental theorem ... Adolf Kneser, Continuous function

L'édition de cet ISBN n'est malheureusement plus disponible.

Synopsis

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. The four-vertex theorem states that the curvature function of a simple, closed plane curve has at least four local extrema. The name of the theorem derives from the convention of calling an extreme point of the curvature function a vertex.The four-vertex theorem was first proved for convex curves in 1909 by Syamadas Mukhopadhyaya.His proof utilizes the fact that a point on the curve is an extremum of the curvature function if and only if the osculating circle at that point has 4th-order contact with the curve. The four- vertex theorem was proved in general by Adolf Kneser in 1912 using a projective argument.The converse to the four-vertex theorem states that any continuous, real-valued function of the circle that has at least two local maxima and two local minima is the curvature function of a simple, closed plane curve. The converse was proved for strictly positive functions in 1971 by Herman Gluck as a special case of a general theorem on pre-assigning the curvature of n-spheres.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. The four-vertex theorem states that the curvature function of a simple, closed plane curve has at least four local extrema. The name of the theorem derives from the convention of calling an extreme point of the curvature function a vertex.The four-vertex theorem was first proved for convex curves in 1909 by Syamadas Mukhopadhyaya.His proof utilizes the fact that a point on the curve is an extremum of the curvature function if and only if the osculating circle at that point has 4th-order contact with the curve. The four- vertex theorem was proved in general by Adolf Kneser in 1912 using a projective argument.The converse to the four-vertex theorem states that any continuous, real-valued function of the circle that has at least two local maxima and two local minima is the curvature function of a simple, closed plane curve. The converse was proved for strictly positive functions in 1971 by Herman Gluck as a special case of a general theorem on pre-assigning the curvature of n-spheres.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

(Aucun exemplaire disponible)

Chercher:



Créez une demande

Vous ne trouvez pas le livre que vous recherchez ? Nous allons poursuivre vos recherches. Si l'un de nos libraires l'ajoute aux offres sur AbeBooks, nous vous le ferons savoir !

Créez une demande