Cet ouvrage traite de la Méthode des Multiplicateurs de Lagrange, qui est l'une des techniques les plus efficaces de l'Optimisation Différentiable et/ou Convexe. Cette dernière est elle-même l'une des branches les plus élaborées de l'Optimisation et s'occupe de la minimisation de fonctions objectif différentiables ou convexes ayant des variables qui sont contraintes à décrire des surfaces différentiables ou des ensembles convexes non ouverts avec bords empêchant l'application du théorème classique d'Euler. Mais, grâce à l'introduction du multiplicateur de Lagrange, on peut par exemple transformer un problème d'optimisation différentiable de fonction objectif F avec contrainte d'égalité {G(x)=0} en un problème d'optimisation globale de la fonction lagrangienne L définie par L(x, )=F(x)+ G(x). Un tel paramètre est le multiplicateur de Lagrange ou la variable duale et peut être un réel, un n-uplet de réels, ou une forme linéaire continue suivant que G soit à valeurs dans IR, IR ou dans un espace de fonctions. Les domaines d'application s'étendent au Contrôle Optimal (Recherche Opérationnelle), à la Télécommunication, aux Problèmes de Contact et de Friction, etc...
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Gratuit expédition vers Etats-Unis
Destinations, frais et délaisVendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9786131598241
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9786131598241
Quantité disponible : Plus de 20 disponibles
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Apr0316110206097
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9786131598241_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Cet ouvrage traite de la Méthode des Multiplicateurs de Lagrange, qui est l'une des techniques les plus efficaces de l'Optimisation Différentiable et/ou Convexe. Cette dernière est elle-même l'une des branches les plus élaborées de l'Optimisation et s'occupe de la minimisation de fonctions objectif différentiables ou convexes ayant des variables qui sont contraintes à décrire des surfaces différentiables ou des ensembles convexes non ouverts avec bords empêchant l'application du théorème classique d'Euler. Mais, grâce à l'introduction du multiplicateur de Lagrange, on peut par exemple transformer un problème d'optimisation différentiable de fonction objectif F avec contrainte d'égalité {G(x)=0} en un problème d'optimisation globale de la fonction lagrangienne L définie par L(x, )=F(x)+ -G(x). Un tel paramètre est le multiplicateur de Lagrange ou la variable duale et peut être un réel, un n-uplet de réels, ou une forme linéaire continue suivant que G soit à valeurs dans IR, IR ou dans un espace de fonctions. Les domaines d'application s'étendent au Contrôle Optimal (Recherche Opérationnelle), à la Télécommunication, aux Problèmes de Contact et de Friction, etc. 96 pp. Französisch. N° de réf. du vendeur 9786131598241
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Cet ouvrage traite de la Méthode des Multiplicateurs de Lagrange, qui est l'une des techniques les plus efficaces de l'Optimisation Différentiable et/ou Convexe. Cette dernière est elle-même l'une des branches les plus élaborées de l'Optimisation et s'occupe de la minimisation de fonctions objectif différentiables ou convexes ayant des variables qui sont contraintes à décrire des surfaces différentiables ou des ensembles convexes non ouverts avec bords empêchant l'application du théorème classique d'Euler. Mais, grâce à l'introduction du multiplicateur de Lagrange, on peut par exemple transformer un problème d'optimisation différentiable de fonction objectif F avec contrainte d'égalité {G(x)=0} en un problème d'optimisation globale de la fonction lagrangienne L définie par L(x, )=F(x)+ -G(x). Un tel paramètre est le multiplicateur de Lagrange ou la variable duale et peut être un réel, un n-uplet de réels, ou une forme linéaire continue suivant que G soit à valeurs dans IR, IR ou dans un espace de fonctions. Les domaines d'application s'étendent au Contrôle Optimal (Recherche Opérationnelle), à la Télécommunication, aux Problèmes de Contact et de Friction, etc. N° de réf. du vendeur 9786131598241
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 5801668
Quantité disponible : Plus de 20 disponibles