Le but de ce travail est de rappeler certains types d'ensembles ouverts faibles, de prouver certaines de ses propriétés et de les utiliser pour définir de nouveaux types d'axiomes de séparation. Indiquons ci-dessous : certains de nos principaux théorèmes importantsSoit (X,??) et (Y,?) deux espaces topologiques satisfont la condition ω-alors la carte f :(X,??)(Y,?) est continue si et seulement si elle est ω-continue. (Ce résultat n'est pas vrai sans condition ω). Soit (X,?) et (Y,??) deux espaces topologiques satisfont la condition ω-B_α, alors la carte f:(X,??)(Y,?) est continue si et seulement si elle est α-ω-continue. Soit (X,?) et (Y,??) deux espaces topologiques satisfont la condition ω-B, alors la carte f:(X,??)(Y,?) est continue si et seulement si elle est pré-ω-continue. Soit (X,?) et (Y,?) deux espaces topologiques de porte et f:(X,??)(Y,??) être une carte, alors f est pré-ω-continu si et seulement si elle est ω-continue. Et f est -ω-continu si et seulement s'il est b-ω-continu. Soit f:Xbrowse-Y une carte ω-continue de l'espace ω-compact Xonto un espace topologique Y. Alors Yis ω-espace compact. (De même pour les autres types de faible continuité et compacité)
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Hadi Mustafa HasanBorn in 18 December 1984 at Hilla-Babil-Iraq. Assistant Professor Professor in 16 May 2017. research interests, General Topology. University of Babylon, Faculty of Education for Pure Sciences, Department of Mathemat. N° de réf. du vendeur 385897568
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The goal of this work is to recall some types of weak open sets, prove some of its properties and use them to define new kinds of separation axioms. Let us state below :some of our important main theoremsLet (X,s) and (Y, ) be two topological spaces satisfy the -condition then the map f:(X,s) (Y, ) is continuous if and only if it is -continuous. ( This result is not true without -condition ). Let (X,s) and (Y, ) be two topological spaces satisfy the -B_ -condition then the map f:(X,s) (Y, ) is continuous if and only if it is - -continuous. Let (X,s) and (Y, ) be two topological spaces satisfy the -B-condition then the map f:(X,s) (Y, ) is continuous if and only if it is pre- -continuous. Let (X,s) and (Y, ) be two door topological spaces and f:(X,s) (Y, ) be a map, then f is pre- -continuous if and only if it is -continuous. And f is beta- -continuous if and only if it is b- -continuous. Let f:X Y be an -continuous map from the -compact space Xonto a topological space Y. Then Yis -compact space. (Similarly for the other types of the weak continuity and compactness) 108 pp. Englisch. N° de réf. du vendeur 9786200778352
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The goal of this work is to recall some types of weak open sets, prove some of its properties and use them to define new kinds of separation axioms. Let us state below :some of our important main theoremsLet (X,s) and (Y, ) be two topological spaces satisfy the -condition then the map f:(X,s) (Y, ) is continuous if and only if it is -continuous. ( This result is not true without -condition ). Let (X,s) and (Y, ) be two topological spaces satisfy the -B_ -condition then the map f:(X,s) (Y, ) is continuous if and only if it is - -continuous. Let (X,s) and (Y, ) be two topological spaces satisfy the -B-condition then the map f:(X,s) (Y, ) is continuous if and only if it is pre- -continuous. Let (X,s) and (Y, ) be two door topological spaces and f:(X,s) (Y, ) be a map, then f is pre- -continuous if and only if it is -continuous. And f is beta- -continuous if and only if it is b- -continuous. Let f:X Y be an -continuous map from the -compact space Xonto a topological space Y. Then Yis -compact space. (Similarly for the other types of the weak continuity and compactness). N° de réf. du vendeur 9786200778352
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -The goal of this work is to recall some types of weak open sets, prove some of its properties and use them to define new kinds of separation axioms. Let us state below :some of our important main theoremsLet (X,¿) and (Y,¿) be two topological spaces satisfy the ¿-condition then the map f:(X,¿)¿(Y,¿) is continuous if and only if it is ¿-continuous. ( This result is not true without ¿-condition ). Let (X,¿) and (Y,¿) be two topological spaces satisfy the ¿-B_¿-condition then the map f:(X,¿)¿(Y,¿) is continuous if and only if it is ¿-¿-continuous. Let (X,¿) and (Y,¿) be two topological spaces satisfy the ¿-B-condition then the map f:(X,¿)¿(Y,¿) is continuous if and only if it is pre-¿-continuous. Let (X,¿) and (Y,¿) be two door topological spaces and f:(X,¿)¿(Y,¿) be a map, then f is pre-¿-continuous if and only if it is ¿-continuous. And f is ¿-¿-continuous if and only if it is b-¿-continuous. Let f:X¿Y be an ¿-continuous map from the ¿-compact space Xonto a topological space Y. Then Yis ¿-compact space. (Similarly for the other types of the weak continuity and compactness)Books on Demand GmbH, Überseering 33, 22297 Hamburg 108 pp. Englisch. N° de réf. du vendeur 9786200778352
Quantité disponible : 2 disponible(s)