La technique d'exploration de données peut être utilisée en collaboration avec un classificateurs K-NN, Naïve Bayes, Random Forest, Support Vector Machine algorithmes utilisés pour diagnostiquer le virus de la grippe porcine affecté par différentes personnes en fonction de leurs symptômes. Cette approche proposée a montré des résultats prometteurs qui peuvent conduire à d'autres tentatives d'utilisation de la technologie de l'information pour diagnostiquer le virus dont les patients souffrent de grippe porcine. Ici, nous avons utilisé K-NN Classification, Naïve Bayes, Random Forest, SVM règles faciles à interpréter. À l'avenir, nous essaierons d'obtenir plus de résultats de précision pour la maladie de la grippe porcine, ce qui aide à trouver différents paramètres en utilisant différentes techniques d'exploration de données comme suggéré par les médecins.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 23 expédition depuis Allemagne vers Etats-Unis
Destinations, frais et délaisVendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The Data mining technique can be used in collaboration With a K-NN classifiers, Naïve Bayes, Random Forest, Support Vector Machine algorithms which used in diagnosing Swine flu disease virus affected across different persons based on their Symptoms. This proposed approach showed some Promising results which may lead to further attempts to utilize information technology for diagnosing virus from which patients are suffering from Swine flu. Here we used K-NN Classification, Naïve Bayes, Random Forest, SVM rules which are easy to interpret. In future, we will try to get more the accuracy results for the swine flu disease which helps to find different parameters using different data mining techniques as per suggested by doctors. 76 pp. Englisch. N° de réf. du vendeur 9786202672399
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Y. DeepikaMs.Y.Deepika had completed her Under Graduation recently at Vignan s Institute of Information Technology, Visakhapatnam. Dr.N.Thirupathi Rao is currently associated with Vignan s Institute of Information Technology, Visakha. N° de réf. du vendeur 494630694
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -The Data mining technique can be used in collaboration With a K-NN classifiers, Naïve Bayes, Random Forest, Support Vector Machine algorithms which used in diagnosing Swine flu disease virus affected across different persons based on their Symptoms. This proposed approach showed some Promising results which may lead to further attempts to utilize information technology for diagnosing virus from which patients are suffering from Swine flu. Here we used K-NN Classification, Naïve Bayes, Random Forest, SVM rules which are easy to interpret. In future, we will try to get more the accuracy results for the swine flu disease which helps to find different parameters using different data mining techniques as per suggested by doctors.Books on Demand GmbH, Überseering 33, 22297 Hamburg 76 pp. Englisch. N° de réf. du vendeur 9786202672399
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The Data mining technique can be used in collaboration With a K-NN classifiers, Naïve Bayes, Random Forest, Support Vector Machine algorithms which used in diagnosing Swine flu disease virus affected across different persons based on their Symptoms. This proposed approach showed some Promising results which may lead to further attempts to utilize information technology for diagnosing virus from which patients are suffering from Swine flu. Here we used K-NN Classification, Naïve Bayes, Random Forest, SVM rules which are easy to interpret. In future, we will try to get more the accuracy results for the swine flu disease which helps to find different parameters using different data mining techniques as per suggested by doctors. N° de réf. du vendeur 9786202672399
Quantité disponible : 1 disponible(s)