This book presents efficient numerical strategies for solving singular perturbation problems, particularly focus on differential-difference equations involving small delay parameters. Singular perturbation problems in various fields of engineering and applied sciences such as fluid dynamics, elasticity, quantum mechanics, electrical networks, are known for their boundary layer behavior, which challenges conventional numerical methods. This book reviews the theoretical background and existing literature before introducing two high-accuracy techniques: a Fourth-Order Adaptive Cubic Spline Method and a Variable Mesh Scheme. These methods are rigorously analyzed for stability, convergence, accuracy and are validated through extensive numerical experimentation. The work is motivated by the limitations of classical techniques and addresses the growing demand for robust computational methods in fields such as fluid dynamics, quantum mechanics, and reaction- diffusion process.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9786203925197
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur L2-9786203925197
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur L2-9786203925197
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 76 pp. Englisch. N° de réf. du vendeur 9786203925197
Quantité disponible : 2 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. This book presents efficient numerical strategies for solving singular perturbation problems, particularly focus on differential-difference equations involving small delay parameters. Singular perturbation problems in various fields of engineering and applied sciences such as fluid dynamics, elasticity, quantum mechanics, electrical networks, are known for their boundary layer behavior, which challenges conventional numerical methods. This book reviews the theoretical background and existing literature before introducing two high-accuracy techniques: a Fourth-Order Adaptive Cubic Spline Method and a Variable Mesh Scheme. These methods are rigorously analyzed for stability, convergence, accuracy and are validated through extensive numerical experimentation. The work is motivated by the limitations of classical techniques and addresses the growing demand for robust computational methods in fields such as fluid dynamics, quantum mechanics, and reaction- diffusion process. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9786203925197
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware Books on Demand GmbH, Überseering 33, 22297 Hamburg 76 pp. Englisch. N° de réf. du vendeur 9786203925197
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book presents efficient numerical strategies for solving singular perturbation problems, particularly focus on differential-difference equations involving small delay parameters. Singular perturbation problems in various fields of engineering and applied sciences such as fluid dynamics, elasticity, quantum mechanics, electrical networks, are known for their boundary layer behavior, which challenges conventional numerical methods. This book reviews the theoretical background and existing literature before introducing two high-accuracy techniques: a Fourth-Order Adaptive Cubic Spline Method and a Variable Mesh Scheme. These methods are rigorously analyzed for stability, convergence, accuracy and are validated through extensive numerical experimentation. The work is motivated by the limitations of classical techniques and addresses the growing demand for robust computational methods in fields such as fluid dynamics, quantum mechanics, and reaction- diffusion process. N° de réf. du vendeur 9786203925197
Quantité disponible : 1 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. High-Accuracy Methods for Singular Perturbation Problems | Fourth-Order Adaptive Cubic Spline and Variable Mesh Schemes for Solving Singular Perturbation Problems | K. Mamatha (u. a.) | Taschenbuch | Englisch | 2025 | LAP LAMBERT Academic Publishing | EAN 9786203925197 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu Print on Demand. N° de réf. du vendeur 133374403
Quantité disponible : 5 disponible(s)