This book summarizes the electricity load forecasting has gained substantial importance nowadays in the modern electrical power management systems with elements of smart greed technology. Power big data has the characteristics of a large number, high dimension and time series. At the same time, there are many forms of missing electric power data, some are missing dispersedly, and some are missing in succession. Therefore, combinations of prediction methods are receiving increasing attention. We performed exploratory data analysis, pre-processing, and train- test split before training the model. We used various metrics to test the advantages of the proposed model: mean absolute error, mean squared error, and root mean squared error.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26396420674
Quantité disponible : 4 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book summarizes the electricity load forecasting has gained substantial importance nowadays in the modern electrical power management systems with elements of smart greed technology. Power big data has the characteristics of a large number, high dimension and time series. At the same time, there are many forms of missing electric power data, some are missing dispersedly, and some are missing in succession. Therefore, combinations of prediction methods are receiving increasing attention. We performed exploratory data analysis, pre-processing, and train- test split before training the model. We used various metrics to test the advantages of the proposed model: mean absolute error, mean squared error, and root mean squared error. 64 pp. Englisch. N° de réf. du vendeur 9786206164500
Quantité disponible : 2 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 399989149
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18396420680
Quantité disponible : 4 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book summarizes the electricity load forecasting has gained substantial importance nowadays in the modern electrical power management systems with elements of smart greed technology. Power big data has the characteristics of a large number, high dimens. N° de réf. du vendeur 887410489
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -This book summarizes the electricity load forecasting has gained substantial importance nowadays in the modern electrical power management systems with elements of smart greed technology. Power big data has the characteristics of a large number, high dimension and time series. At the same time, there are many forms of missing electric power data, some are missing dispersedly, and some are missing in succession. Therefore, combinations of prediction methods are receiving increasing attention. We performed exploratory data analysis, pre-processing, and train- test split before training the model. We used various metrics to test the advantages of the proposed model: mean absolute error, mean squared error, and root mean squared error.Books on Demand GmbH, Überseering 33, 22297 Hamburg 64 pp. Englisch. N° de réf. du vendeur 9786206164500
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book summarizes the electricity load forecasting has gained substantial importance nowadays in the modern electrical power management systems with elements of smart greed technology. Power big data has the characteristics of a large number, high dimension and time series. At the same time, there are many forms of missing electric power data, some are missing dispersedly, and some are missing in succession. Therefore, combinations of prediction methods are receiving increasing attention. We performed exploratory data analysis, pre-processing, and train- test split before training the model. We used various metrics to test the advantages of the proposed model: mean absolute error, mean squared error, and root mean squared error. N° de réf. du vendeur 9786206164500
Quantité disponible : 1 disponible(s)