Articles liés à Analyse de la classification pour les données déséquilibrées

Analyse de la classification pour les données déséquilibrées - Couverture souple

 
9786206345435: Analyse de la classification pour les données déséquilibrées

Synopsis

Une énorme quantité de données est collectée et stockée dans des bases de données partout dans le monde. Ces données sont regroupées et continuent d'augmenter chaque année. L'extraction des informations cachées dans ces bases de données et la classification des informations extraites sont les tâches les plus importantes de l'exploration de données. Si ces ensembles de données sont déséquilibrés, il devient difficile de les traiter. La prédiction de l'avenir est l'une des tâches fondamentales de l'exploration de données. Travailler avec des ensembles de données déséquilibrés pour prédire les résultats possibles est une tâche très fastidieuse. Un ensemble de données est déséquilibré lorsqu'il n'est pas classé correctement, c'est-à-dire lorsqu'une classe contient plus d'instances que l'autre. Ces classes sont souvent représentées par une classe positive (minoritaire) et une classe négative (majoritaire). La classe qui a le moins d'échantillons est appelée classe minoritaire, et celle qui en a le plus est appelée classe majoritaire. Le déséquilibre d'un ensemble de données est à l'origine de nombreux problèmes graves dans le domaine de l'exploration de données. En général, l'algorithme de classification standard considère l'ensemble de données comme équilibré, ce qui se traduit par un penchant pour la classe majoritaire. L'équilibrage des ensembles de données est donc essentiel pour de nombreuses applications en temps réel.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 35,90

Autre devise

EUR 23 expédition depuis Allemagne vers Etats-Unis

Destinations, frais et délais

Résultats de recherche pour Analyse de la classification pour les données déséquilibrées

Image fournie par le vendeur

Dharmendra Singh Rajput
ISBN 10 : 6206345432 ISBN 13 : 9786206345435
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Une énorme quantité de données est collectée et stockée dans des bases de données partout dans le monde. Ces données sont regroupées et continuent d'augmenter chaque année. L'extraction des informations cachées dans ces bases de données et la classification des informations extraites sont les tâches les plus importantes de l'exploration de données. Si ces ensembles de données sont déséquilibrés, il devient difficile de les traiter. La prédiction de l'avenir est l'une des tâches fondamentales de l'exploration de données. Travailler avec des ensembles de données déséquilibrés pour prédire les résultats possibles est une tâche très fastidieuse. Un ensemble de données est déséquilibré lorsqu'il n'est pas classé correctement, c'est-à-dire lorsqu'une classe contient plus d'instances que l'autre. Ces classes sont souvent représentées par une classe positive (minoritaire) et une classe négative (majoritaire). La classe qui a le moins d'échantillons est appelée classe minoritaire, et celle qui en a le plus est appelée classe majoritaire. Le déséquilibre d'un ensemble de données est à l'origine de nombreux problèmes graves dans le domaine de l'exploration de données. En général, l'algorithme de classification standard considère l'ensemble de données comme équilibré, ce qui se traduit par un penchant pour la classe majoritaire. L'équilibrage des ensembles de données est donc essentiel pour de nombreuses applications en temps réel. 68 pp. Französisch. N° de réf. du vendeur 9786206345435

Contacter le vendeur

Acheter neuf

EUR 35,90
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Dharmendra Singh Rajput|S. Sinduja
Edité par Editions Notre Savoir, 2023
ISBN 10 : 6206345432 ISBN 13 : 9786206345435
Neuf Couverture souple

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 1043584364

Contacter le vendeur

Acheter neuf

EUR 29,95
Autre devise
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Dharmendra Singh Rajput
ISBN 10 : 6206345432 ISBN 13 : 9786206345435
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware Books on Demand GmbH, Überseering 33, 22297 Hamburg 68 pp. Französisch. N° de réf. du vendeur 9786206345435

Contacter le vendeur

Acheter neuf

EUR 35,90
Autre devise
Frais de port : EUR 60
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Dharmendra Singh Rajput
Edité par Editions Notre Savoir, 2023
ISBN 10 : 6206345432 ISBN 13 : 9786206345435
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Une énorme quantité de données est collectée et stockée dans des bases de données partout dans le monde. Ces données sont regroupées et continuent d'augmenter chaque année. L'extraction des informations cachées dans ces bases de données et la classification des informations extraites sont les tâches les plus importantes de l'exploration de données. Si ces ensembles de données sont déséquilibrés, il devient difficile de les traiter. La prédiction de l'avenir est l'une des tâches fondamentales de l'exploration de données. Travailler avec des ensembles de données déséquilibrés pour prédire les résultats possibles est une tâche très fastidieuse. Un ensemble de données est déséquilibré lorsqu'il n'est pas classé correctement, c'est-à-dire lorsqu'une classe contient plus d'instances que l'autre. Ces classes sont souvent représentées par une classe positive (minoritaire) et une classe négative (majoritaire). La classe qui a le moins d'échantillons est appelée classe minoritaire, et celle qui en a le plus est appelée classe majoritaire. Le déséquilibre d'un ensemble de données est à l'origine de nombreux problèmes graves dans le domaine de l'exploration de données. En général, l'algorithme de classification standard considère l'ensemble de données comme équilibré, ce qui se traduit par un penchant pour la classe majoritaire. L'équilibrage des ensembles de données est donc essentiel pour de nombreuses applications en temps réel. N° de réf. du vendeur 9786206345435

Contacter le vendeur

Acheter neuf

EUR 37,20
Autre devise
Frais de port : EUR 60,60
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Dharmendra Singh Rajput (u. a.)
Edité par Editions Notre Savoir, 2023
ISBN 10 : 6206345432 ISBN 13 : 9786206345435
Neuf Taschenbuch

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Analyse de la classification pour les données déséquilibrées | Dharmendra Singh Rajput (u. a.) | Taschenbuch | Französisch | 2023 | Editions Notre Savoir | EAN 9786206345435 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. N° de réf. du vendeur 127406351

Contacter le vendeur

Acheter neuf

EUR 33
Autre devise
Frais de port : EUR 70
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier