Une énorme quantité de données est collectée et stockée dans des bases de données partout dans le monde. Ces données sont regroupées et continuent d'augmenter chaque année. L'extraction des informations cachées dans ces bases de données et la classification des informations extraites sont les tâches les plus importantes de l'exploration de données. Si ces ensembles de données sont déséquilibrés, il devient difficile de les traiter. La prédiction de l'avenir est l'une des tâches fondamentales de l'exploration de données. Travailler avec des ensembles de données déséquilibrés pour prédire les résultats possibles est une tâche très fastidieuse. Un ensemble de données est déséquilibré lorsqu'il n'est pas classé correctement, c'est-à-dire lorsqu'une classe contient plus d'instances que l'autre. Ces classes sont souvent représentées par une classe positive (minoritaire) et une classe négative (majoritaire). La classe qui a le moins d'échantillons est appelée classe minoritaire, et celle qui en a le plus est appelée classe majoritaire. Le déséquilibre d'un ensemble de données est à l'origine de nombreux problèmes graves dans le domaine de l'exploration de données. En général, l'algorithme de classification standard considère l'ensemble de données comme équilibré, ce qui se traduit par un penchant pour la classe majoritaire. L'équilibrage des ensembles de données est donc essentiel pour de nombreuses applications en temps réel.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 23 expédition depuis Allemagne vers Etats-Unis
Destinations, frais et délaisVendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Une énorme quantité de données est collectée et stockée dans des bases de données partout dans le monde. Ces données sont regroupées et continuent d'augmenter chaque année. L'extraction des informations cachées dans ces bases de données et la classification des informations extraites sont les tâches les plus importantes de l'exploration de données. Si ces ensembles de données sont déséquilibrés, il devient difficile de les traiter. La prédiction de l'avenir est l'une des tâches fondamentales de l'exploration de données. Travailler avec des ensembles de données déséquilibrés pour prédire les résultats possibles est une tâche très fastidieuse. Un ensemble de données est déséquilibré lorsqu'il n'est pas classé correctement, c'est-à-dire lorsqu'une classe contient plus d'instances que l'autre. Ces classes sont souvent représentées par une classe positive (minoritaire) et une classe négative (majoritaire). La classe qui a le moins d'échantillons est appelée classe minoritaire, et celle qui en a le plus est appelée classe majoritaire. Le déséquilibre d'un ensemble de données est à l'origine de nombreux problèmes graves dans le domaine de l'exploration de données. En général, l'algorithme de classification standard considère l'ensemble de données comme équilibré, ce qui se traduit par un penchant pour la classe majoritaire. L'équilibrage des ensembles de données est donc essentiel pour de nombreuses applications en temps réel. 68 pp. Französisch. N° de réf. du vendeur 9786206345435
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 1043584364
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware Books on Demand GmbH, Überseering 33, 22297 Hamburg 68 pp. Französisch. N° de réf. du vendeur 9786206345435
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Une énorme quantité de données est collectée et stockée dans des bases de données partout dans le monde. Ces données sont regroupées et continuent d'augmenter chaque année. L'extraction des informations cachées dans ces bases de données et la classification des informations extraites sont les tâches les plus importantes de l'exploration de données. Si ces ensembles de données sont déséquilibrés, il devient difficile de les traiter. La prédiction de l'avenir est l'une des tâches fondamentales de l'exploration de données. Travailler avec des ensembles de données déséquilibrés pour prédire les résultats possibles est une tâche très fastidieuse. Un ensemble de données est déséquilibré lorsqu'il n'est pas classé correctement, c'est-à-dire lorsqu'une classe contient plus d'instances que l'autre. Ces classes sont souvent représentées par une classe positive (minoritaire) et une classe négative (majoritaire). La classe qui a le moins d'échantillons est appelée classe minoritaire, et celle qui en a le plus est appelée classe majoritaire. Le déséquilibre d'un ensemble de données est à l'origine de nombreux problèmes graves dans le domaine de l'exploration de données. En général, l'algorithme de classification standard considère l'ensemble de données comme équilibré, ce qui se traduit par un penchant pour la classe majoritaire. L'équilibrage des ensembles de données est donc essentiel pour de nombreuses applications en temps réel. N° de réf. du vendeur 9786206345435
Quantité disponible : 1 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Analyse de la classification pour les données déséquilibrées | Dharmendra Singh Rajput (u. a.) | Taschenbuch | Französisch | 2023 | Editions Notre Savoir | EAN 9786206345435 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. N° de réf. du vendeur 127406351
Quantité disponible : 5 disponible(s)