Of a special interest are tilings in hyperbolic n-space. The present work studies tilings in hyperbolic n-space of arbitrary dimension by polytopes. The best behaved tilings are the face-to-face tilings by convex polytopes. The main results of this publication are obtained for tilings (isohedral, non-isohedral, face-to-face, non- face-to- face) in the hyperbolic n-space of arbitrary dimension for any n, (n >= 2) by compact and non-compact polytopes and we describe their discrete isometry groups and properties. Torsion free groups are especially important.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 4,60 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9786207842315_new
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9786207842315
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 68 pp. Englisch. N° de réf. du vendeur 9786207842315
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Of a special interest are tilings in hyperbolic n-space. The present work studies tilings in hyperbolic n-space of arbitrary dimension by polytopes. The best behaved tilings are the face-to-face tilings by convex polytopes. The main results of this publication are obtained for tilings (isohedral, non-isohedral, face-to-face, non- face-to- face) in the hyperbolic n-space of arbitrary dimension for any n, (n 2) by compact and non-compact polytopes and we describe their discrete isometry groups and properties. Torsion free groups are especially important. N° de réf. du vendeur 9786207842315
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Of a special interest are tilings in hyperbolic n¿space. The present work studies tilings in hyperbolic n¿space of arbitrary dimension by polytopes. The best behaved tilings are the face-to-face tilings by convex polytopes. The main results of this publication are obtained for tilings (isohedral, non-isohedral, face-to-face, non- face-to- face) in the hyperbolic n¿space of arbitrary dimension for any n, (n ¿ 2) by compact and non-compact polytopes and we describe their discrete isometry groups and properties. Torsion free groups are especially important.Books on Demand GmbH, Überseering 33, 22297 Hamburg 68 pp. Englisch. N° de réf. du vendeur 9786207842315
Quantité disponible : 2 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. Of a special interest are tilings in hyperbolic n-space. The present work studies tilings in hyperbolic n-space of arbitrary dimension by polytopes. The best behaved tilings are the face-to-face tilings by convex polytopes. The main results of this publication are obtained for tilings (isohedral, non-isohedral, face-to-face, non- face-to- face) in the hyperbolic n-space of arbitrary dimension for any n, (n >= 2) by compact and non-compact polytopes and we describe their discrete isometry groups and properties. Torsion free groups are especially important. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9786207842315
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26402772301
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18402772295
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 410414738
Quantité disponible : 4 disponible(s)