The deep learning approach combined with spectroscopic sensing techniques has shown great potential for quality evaluation of food and agro-products. Current advances in deep learning-based qualitative analysis include variety identification, geographical origin detection, adulteration recognition, and bruise detection, whereas quantitative analysis includes multiple component content prediction for fruits, grains, and crops. The main advantage of deep learning approach is the decreasing the dependence on human domain knowledge by end-to-end analysis and the improved precision and generalizability. This book discusses the current challenges of conventional chemometric methods and the emerging deep learning approach for spectral analysis. The research on exploring the learning mechanism of the 'black box' deep learning model is discussed. This book focuses on the application of deep learning approaches on quality evaluation of food and agro-products, lessons from current studies, and future perspectives.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Jiang HuiHui Jiang is a full professor in Jiangsu University and holds a PhD in Control Science and Engineering from the same university. His area of research includes the fabrication of olfactory and optical sensors for food analysi. N° de réf. du vendeur 1959908231
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9786208223816_new
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9786208223816
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 284 pp. Englisch. N° de réf. du vendeur 9786208223816
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering. N° de réf. du vendeur 9786208223816
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -The deep learning approach combined with spectroscopic sensing techniques has shown great potential for quality evaluation of food and agro-products. Current advances in deep learning-based qualitative analysis include variety identification, geographical origin detection, adulteration recognition, and bruise detection, whereas quantitative analysis includes multiple component content prediction for fruits, grains, and crops. The main advantage of deep learning approach is the decreasing the dependence on human domain knowledge by end-to-end analysis and the improved precision and generalizability. This book discusses the current challenges of conventional chemometric methods and the emerging deep learning approach for spectral analysis. The research on exploring the learning mechanism of the 'black box' deep learning model is discussed. This book focuses on the application of deep learning approaches on quality evaluation of food and agro-products, lessons from current studies, and future perspectives.Books on Demand GmbH, Überseering 33, 22297 Hamburg 284 pp. Englisch. N° de réf. du vendeur 9786208223816
Quantité disponible : 2 disponible(s)
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Paperback. Etat : new. Paperback. The deep learning approach combined with spectroscopic sensing techniques has shown great potential for quality evaluation of food and agro-products. Current advances in deep learning-based qualitative analysis include variety identification, geographical origin detection, adulteration recognition, and bruise detection, whereas quantitative analysis includes multiple component content prediction for fruits, grains, and crops. The main advantage of deep learning approach is the decreasing the dependence on human domain knowledge by end-to-end analysis and the improved precision and generalizability. This book discusses the current challenges of conventional chemometric methods and the emerging deep learning approach for spectral analysis. The research on exploring the learning mechanism of the 'black box' deep learning model is discussed. This book focuses on the application of deep learning approaches on quality evaluation of food and agro-products, lessons from current studies, and future perspectives. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9786208223816
Quantité disponible : 1 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. The deep learning approach combined with spectroscopic sensing techniques has shown great potential for quality evaluation of food and agro-products. Current advances in deep learning-based qualitative analysis include variety identification, geographical origin detection, adulteration recognition, and bruise detection, whereas quantitative analysis includes multiple component content prediction for fruits, grains, and crops. The main advantage of deep learning approach is the decreasing the dependence on human domain knowledge by end-to-end analysis and the improved precision and generalizability. This book discusses the current challenges of conventional chemometric methods and the emerging deep learning approach for spectral analysis. The research on exploring the learning mechanism of the 'black box' deep learning model is discussed. This book focuses on the application of deep learning approaches on quality evaluation of food and agro-products, lessons from current studies, and future perspectives. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9786208223816
Quantité disponible : 1 disponible(s)
Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis
Paperback. Etat : new. Paperback. The deep learning approach combined with spectroscopic sensing techniques has shown great potential for quality evaluation of food and agro-products. Current advances in deep learning-based qualitative analysis include variety identification, geographical origin detection, adulteration recognition, and bruise detection, whereas quantitative analysis includes multiple component content prediction for fruits, grains, and crops. The main advantage of deep learning approach is the decreasing the dependence on human domain knowledge by end-to-end analysis and the improved precision and generalizability. This book discusses the current challenges of conventional chemometric methods and the emerging deep learning approach for spectral analysis. The research on exploring the learning mechanism of the 'black box' deep learning model is discussed. This book focuses on the application of deep learning approaches on quality evaluation of food and agro-products, lessons from current studies, and future perspectives. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9786208223816
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26403383181
Quantité disponible : 4 disponible(s)