Articles liés à Google JAX Cookbook: Perform machine learning and numerical...

Google JAX Cookbook: Perform machine learning and numerical computing with combined capabilities of TensorFlow and NumPy - Couverture souple

 
9788197950414: Google JAX Cookbook: Perform machine learning and numerical computing with combined capabilities of TensorFlow and NumPy

Synopsis

This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.

The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.

If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.


Key Learnings

  • Get your calculations done faster by moving from NumPy to JAX's optimized framework.
  • Make your training pipelines more efficient by profiling how long things take and how much memory they use.
  • Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.
  • Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.
  • Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.
  • Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.
  • Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.
  • Use advanced visualization techniques, like confusion matrices and learning curves, to make model evaluation more effective.
  • Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.
  • Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.

Table of Content

  1. Transition NumPy to JAX
  2. Profiling Computation and Device Memory
  3. Debugging Runtime Values and Errors
  4. Mastering Pytrees for Data Structures
  5. Exporting and Serialization
  6. Type Promotion Semantics and Mixed Precision
  7. Integrating Foreign Functions (FFI)
  8. Training Neural Networks with JAX

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 49,36

Autre devise

EUR 16,97 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 46,30

Autre devise

EUR 10,61 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Résultats de recherche pour Google JAX Cookbook: Perform machine learning and numerical...

Image fournie par le vendeur

Quent, Zephyr
Edité par Gitforgits 10/30/2024, 2024
ISBN 10 : 8197950415 ISBN 13 : 9788197950414
Neuf Paperback or Softback

Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback or Softback. Etat : New. Google JAX Cookbook: Perform machine learning and numerical computing with combined capabilities of TensorFlow and NumPy 0.97. Book. N° de réf. du vendeur BBS-9788197950414

Contacter le vendeur

Acheter neuf

EUR 46,30
Autre devise
Frais de port : EUR 10,61
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Quent, Zephyr
Edité par GitforGits, 2024
ISBN 10 : 8197950415 ISBN 13 : 9788197950414
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9788197950414

Contacter le vendeur

Acheter neuf

EUR 50,72
Autre devise
Frais de port : EUR 6,79
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Unknown, Unknown
ISBN 10 : 8197950415 ISBN 13 : 9788197950414
Neuf

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 49264723-n

Contacter le vendeur

Acheter neuf

EUR 43,98
Autre devise
Frais de port : EUR 16,97
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Unknown, Unknown
ISBN 10 : 8197950415 ISBN 13 : 9788197950414
Ancien ou d'occasion

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 49264723

Contacter le vendeur

Acheter D'occasion

EUR 49,36
Autre devise
Frais de port : EUR 16,97
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Quent, Zephyr
Edité par GitforGits, 2024
ISBN 10 : 8197950415 ISBN 13 : 9788197950414
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9788197950414_new

Contacter le vendeur

Acheter neuf

EUR 62,28
Autre devise
Frais de port : EUR 4,62
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Unknown, Unknown
ISBN 10 : 8197950415 ISBN 13 : 9788197950414
Ancien ou d'occasion

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 49264723

Contacter le vendeur

Acheter D'occasion

EUR 56,45
Autre devise
Frais de port : EUR 17,38
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Unknown, Unknown
ISBN 10 : 8197950415 ISBN 13 : 9788197950414
Neuf

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 49264723-n

Contacter le vendeur

Acheter neuf

EUR 57,74
Autre devise
Frais de port : EUR 17,38
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Zephyr Quent
Edité par Gitforgits Okt 2024, 2024
ISBN 10 : 8197950415 ISBN 13 : 9788197950414
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.Key LearningsGet your calculations done faster by moving from NumPy to JAX's optimized framework.Make your training pipelines more efficient by profiling how long things take and how much memory they use.Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.Table of ContentTransition NumPy to JAXProfiling Computation and Device MemoryDebugging Runtime Values and ErrorsMastering Pytrees for Data StructuresExporting and SerializationType Promotion Semantics and Mixed PrecisionIntegrating Foreign Functions (FFI)Training Neural Networks with JAX 252 pp. Englisch. N° de réf. du vendeur 9788197950414

Contacter le vendeur

Acheter neuf

EUR 68,30
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Zephyr Quent
Edité par Gitforgits, 2024
ISBN 10 : 8197950415 ISBN 13 : 9788197950414
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.Key LearningsGet your calculations done faster by moving from NumPy to JAX's optimized framework.Make your training pipelines more efficient by profiling how long things take and how much memory they use.Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.Table of ContentTransition NumPy to JAXProfiling Computation and Device MemoryDebugging Runtime Values and ErrorsMastering Pytrees for Data StructuresExporting and SerializationType Promotion Semantics and Mixed PrecisionIntegrating Foreign Functions (FFI)Training Neural Networks with JAX. N° de réf. du vendeur 9788197950414

Contacter le vendeur

Acheter neuf

EUR 69,83
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Zephyr Quent
Edité par Gitforgits Okt 2024, 2024
ISBN 10 : 8197950415 ISBN 13 : 9788197950414
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.Key LearningsGet your calculations done faster by moving from NumPy to JAX's optimized framework.Make your training pipelines more efficient by profiling how long things take and how much memory they use.Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.Table of ContentTransition NumPy to JAXProfiling Computation and Device MemoryDebugging Runtime Values and ErrorsMastering Pytrees for Data StructuresExporting and SerializationType Promotion Semantics and Mixed PrecisionIntegrating Foreign Functions (FFI)Training Neural Networks with JAXLibri GmbH, Europaallee 1, 36244 Bad Hersfeld 252 pp. Englisch. N° de réf. du vendeur 9788197950414

Contacter le vendeur

Acheter neuf

EUR 68,30
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

There are 3 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre