These are the written notes of Fermi's Lectures supported by the Accademia Nazionale dei Lincei and given at the Scuola Normale Superiore of Pisa during March-April 1973. We propose to discuss here certain spectral properties of Schrödinger operators H=-D+V(x) (D the Laplacian and V a potential) which have application to scattering theory. We consider an operator H with potential V of class SR. We show that the positive point spectrum of H is a discrete set in R+. Eigenfunctions which correspond to positive eigenvalues are shown to decay rapidly. This property is shown to hold also for generalized eigenfunctions. We then establish the limiting absorbing principle, which is a basic tool in our study.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 11,49 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 68 pages. 9.06x6.38x0.24 inches. In Stock. N° de réf. du vendeur __8876422471
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Kartoniert / Broschiert. Etat : New. These are the written notes of Fermi s Lectures supported by the Accademia Nazionale dei Lincei and given at the Scuola Normale Superiore of Pisa during March-April 1973. We propose to discuss here certain spectral properties of Schroedinger operators H=-D+V. N° de réf. du vendeur 458789802
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Neuware - These are the written notes of Fermi's Lectures supported by the Accademia Nazionale dei Lincei and given at the Scuola Normale Superiore of Pisa during March-April 1973. We propose to discuss here certain spectral properties of Schrödinger operators H=-D+V(x) (D the Laplacian and V a potential) which have application to scattering theory. We consider an operator H with potential V of class SR. We show that the positive point spectrum of H is a discrete set in R+. Eigenfunctions which correspond to positive eigenvalues are shown to decay rapidly. This property is shown to hold also for generalized eigenfunctions. We then establish the limiting absorbing principle, which is a basic tool in our study. N° de réf. du vendeur 9788876422478
Quantité disponible : 1 disponible(s)