To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num- ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote "The de- duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . " [80, p.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This book is a detailed exposition of algebraic and geometrical aspects related to the theory of symmetries and recursion operators for nonlinear partial differential equations (Pde), both in classical and in super, or graded, versions. It contains an original theory of Frölicher-Nijenhuis brackets which is the basis for a special cohomological theory naturally related to the equation structure. This theory gives rise to infinitesimal deformations of Pde, recursion operators being a particular case of such deformations.
Efficient computational formulas for constructing recursion operators are deduced and, in combination with the theory of coverings, lead to practical algorithms of computations. Using these techniques, previously unknown recursion operators (together with the corresponding infinite series of symmetries) are constructed. In particular, complete integrability of some superequations of mathematical physics (Korteweg-de Vries, nonlinear Schrödinger equations, etc.) is proved.
Audience: The book will be of interest to mathematicians and physicists specializing in geometry of differential equations, integrable systems and related topics.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 11871539-n
Quantité disponible : 15 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Apr0316110336938
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. This book is a detailed exposition of algebraic and geometrical aspects related to the theory of symmetries and recursion operators for nonlinear partial differential equations (PDE), both in classical and in super, or graded, versions. It contains an original theory of Frolicher-Nijenhuis brackets which is the basis for a special cohomological theory naturally related to the equation structure. This theory gives rise to infinitesimal deformations of PDE, recursion operators being a particular case of such deformations. Efficient computational formulas for constructing recursion operators are deduced and, in combination with the theory of coverings, lead to practical algorithms of computations. Using these techniques, previously unknown recursion operators (together with the corresponding infinite series of symmetries) are constructed. In particular, complete integrability of some superequations of mathematical physics (Korteweg-de Vries, nonlinear Schrodinger equations, etc.) is proved. Audience: The book will be of interest to mathematicians and physicists specializing in geometry of differential equations, integrable systems and related topics. To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite numA ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote "The deA duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . " [80, Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9789048154609
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9789048154609_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote 'The de duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . ' [80, p. 404 pp. Englisch. N° de réf. du vendeur 9789048154609
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 11871539
Quantité disponible : 15 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 5819316
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9789048154609
Quantité disponible : Plus de 20 disponibles
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations | P. H. Kersten (u. a.) | Taschenbuch | xvi | Englisch | 2010 | Springer | EAN 9789048154609 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 107246056
Quantité disponible : 5 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote 'The de duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . ' [80, p.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 404 pp. Englisch. N° de réf. du vendeur 9789048154609
Quantité disponible : 1 disponible(s)