Articles liés à Normal Modes and Localization in Nonlinear Systems

Normal Modes and Localization in Nonlinear Systems - Couverture souple

 
9789048157150: Normal Modes and Localization in Nonlinear Systems

Synopsis

The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin- earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape [n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape [n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Quatrième de couverture

Vibration analysis of nonlinear systems poses great challenges in both physics and engineering. This innovative book takes a completely new approach to the subject, focusing on nonlinear normal modes (NNMs) and nonlinear mode localization, and demonstrates that these concepts provide an excellent analytical tool for the study of nonlinear phenomena that cannot be analyzed by conventional techniques based on linear or quasi–linear theory.

Written by professor Alexander F. Vakakis and four colleagues from Russia and the Ukraine, the book employs the similarity of NNMs to the normal modes of classical vibration theory to create a new perspective on this highly specialized, yet steadily growing field. Providing a solid foundation in theory, the authors explain, for example, the design of systems with passive or active motion confinement properties and examine applications of essentially nonlinear phenomena to the vibration and shock isolation of flexible, large–scale structures.

Much of the material presented is completely new or appearing here for the first time in Western engineering literature––including numerous mathematical techniques for studying NNMs, their bifurcations, and the localization phenomena associated with them. The authors describe strongly nonlinear analytical methodologies that permit the analytical treatment of oscillators in strongly nonlinear regimes. They then demonstrate the application of these methodologies in numerous practical engineering and physics problems. Also presented is the method of nonsmooth temporal transformations, which enables analytic perturbation studies of strongly nonlinear oscillations, a new asymptotic methodology for analyzing standing solitary waves in some classes of nonlinear partial differential equations, and some new results on localized or nonlocalized oscillations of vibro–impact systems.

Supplemented with an extensive bibliography and numerous illustrations and examples that demonstrate techniques and applications, Normal Modes and Localization in Nonlinear Systems is a useful text and professional guide for physicists studying nonlinear oscillations and waves, for vibration specialists, design engineers, and researchers studying nonlinear dynamics, and for graduate students in applied mechanics and mechanical engineering. It also offers a multitude of new concepts and techniques that can form the basis for future research in nonlinear dynamics and vibrations.

A complete guide to the theory and applications of nonlinear normal modes and nonlinear mode localization

This landmark volume offers a completely new angle on the study of vibrations in discrete or continuous nonlinear oscillators. It describes the use of NNMs to analyze the vibrations of nonlinear systems and design systems with motion confinement properties.

Normal Modes and Localization in Nonlinear Systems features
∗ New and established mathematical techniques that can be used for more refined vibration and shock isolation designs of practical flexible structures
∗ Complete coverage of free and forced motions in systems with weak or strong nonlinearities, including results that cannot be captured with existing linear or quasi–linear techniques
∗ A new method for analyzing strongly nonlinear systems that permits perturbation analysis of systems with essential nonlinearities
∗ A theoretical link between nonlinear normal modes and standing solitary waves
∗ The first experimental verifications of nonlinear mode localization and nonlinear motion confinement in flexible engineering structures

Biographie de l'auteur

Alexander F. Vakakis is an associate professor in the Department of Mechanical and Industrial Engineering of the University of Illinois at Urbana–Champaign. His research interests include linear and nonlinear dynamics and vibrations, modal analysis, structural wave propagation, and bioengineering. He is an NSF Young Investigator Award recipient (1994), and his research is supported by federal and industrial grants. He received his PhD from the California Institute of Technology in 1990.

Leonid I. Manevitch is a professor in the Institute of Chemical Physics at the Russian Academy of Sciences, Moscow. He has published numerous papers and books on nonlinear dynamics and its applications. His current research interests center on nonlinear phenomena in molecular dynamics.

Yuri V. Mikhlin is a professor in the Department of Applied Mathematics at Kharkov′s Polytechnic University in the Ukraine. He received his doctor of science degree from the Institute of Mechanical Problems at the Russian Academy of Sciences. His current research focuses on nonlinear oscillations of conservative and vibro–impact systems and on nonlinear solitary waves.

Valery N. Pilipchuk is a professor and Head of the Department of Applied Mathematics at the Ukrainian State Chemical and Technological University, Dnepropetrovsk, Ukraine. He received his two doctor of science degrees from the Institute of Mechanical Problems at the Russian Academy of Sciences in 1992. His research interests include nonlinear oscillations and waves and the theory of ordinary differential equations.

Alexandr A. Zevin is a researcher at the Transmag Research Institute at the Ukrainian Academy of Sciences, Dnepropetrovsk, Ukraine. He received his doctor of science degree from the Institute of Mechanical Problems at the Russian Academy of Sciences in 1989. His current research interests include the qualitative theory of nonlinear oscillations, and the theory of nonlinear ordinary differential equations.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 186,09

Autre devise

EUR 2,27 expédition vers Etats-Unis

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 155,28

Autre devise

EUR 2,27 expédition vers Etats-Unis

Destinations, frais et délais

Autres éditions populaires du même titre

9780792370109: Normal Modes and Localization in Nonlinear Systems

Edition présentée

ISBN 10 :  0792370104 ISBN 13 :  9780792370109
Editeur : Kluwer Academic Publishers, 2002
Couverture rigide

Résultats de recherche pour Normal Modes and Localization in Nonlinear Systems

Image fournie par le vendeur

Vakakis, Alexander F. (EDT)
Edité par Springer, 2011
ISBN 10 : 9048157153 ISBN 13 : 9789048157150
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 11877827-n

Contacter le vendeur

Acheter neuf

EUR 155,28
Autre devise
Frais de port : EUR 2,27
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image d'archives

Alexander F. Vakakis
Edité par Springer, Dordrecht, 2011
ISBN 10 : 9048157153 ISBN 13 : 9789048157150
Neuf Paperback Edition originale

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. This book contains a collection of original papers on nonlinear normal modes and localization in dynamical systems from leading experts in the field. The reader will find new analytical and computational techniques for studying normal modes and localization phenomena in nonlinear discrete and continuous oscillators. In addition, examples are provided of applications of these concepts to diverse problems of engineering and applied mathematics, such as nonlinear control of micro-gyroscopes, dynamics of floating offshore platforms, buckling of imperfect continua, order reduction of nonlinear systems, dynamics of nonlinear vibration absorbers, spatial localization and pattern formation in extended systems, singular asymptotics and nonlinear modal interactions and energy pumping in coupled oscillators. The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9789048157150

Contacter le vendeur

Acheter neuf

EUR 157,63
Autre devise
Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Edité par Springer, 2011
ISBN 10 : 9048157153 ISBN 13 : 9789048157150
Neuf Couverture souple

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Apr0316110337158

Contacter le vendeur

Acheter neuf

EUR 158,67
Autre devise
Frais de port : EUR 3,43
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Edité par Springer, 2011
ISBN 10 : 9048157153 ISBN 13 : 9789048157150
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9789048157150_new

Contacter le vendeur

Acheter neuf

EUR 158,79
Autre devise
Frais de port : EUR 13,77
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Alexander F. Vakakis
ISBN 10 : 9048157153 ISBN 13 : 9789048157150
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape Ct. n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape Ct. n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996. 300 pp. Englisch. N° de réf. du vendeur 9789048157150

Contacter le vendeur

Acheter neuf

EUR 160,49
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Vakakis, Alexander F.
Edité par Springer Netherlands, 2011
ISBN 10 : 9048157153 ISBN 13 : 9789048157150
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia a. N° de réf. du vendeur 5819569

Contacter le vendeur

Acheter neuf

EUR 136,16
Autre devise
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Vakakis, Alexander F. (EDT)
Edité par Springer, 2011
ISBN 10 : 9048157153 ISBN 13 : 9789048157150
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 11877827

Contacter le vendeur

Acheter D'occasion

EUR 186,09
Autre devise
Frais de port : EUR 2,27
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image d'archives

. Ed(s): Vakakis, Alexander F.
Edité par Springer, 2010
ISBN 10 : 9048157153 ISBN 13 : 9789048157150
Neuf Couverture souple Edition originale

Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Editor(s): Vakakis, Alexander F. Num Pages: 300 pages, biography. BIC Classification: PBKJ; PHD; TGMD4. Category: (P) Professional & Vocational. Dimension: 254 x 178 x 15. Weight in Grams: 680. . 2010. 1st ed. Softcover of orig. ed. 2001. Paperback. . . . . N° de réf. du vendeur V9789048157150

Contacter le vendeur

Acheter neuf

EUR 197,46
Autre devise
Frais de port : EUR 10,50
De Irlande vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Alexander F. Vakakis
ISBN 10 : 9048157153 ISBN 13 : 9789048157150
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape ¢n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape ¢n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 300 pp. Englisch. N° de réf. du vendeur 9789048157150

Contacter le vendeur

Acheter neuf

EUR 160,49
Autre devise
Frais de port : EUR 60
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Alexander F. Vakakis
ISBN 10 : 9048157153 ISBN 13 : 9789048157150
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape Ct. n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape Ct. n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996. N° de réf. du vendeur 9789048157150

Contacter le vendeur

Acheter neuf

EUR 164,49
Autre devise
Frais de port : EUR 62,85
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 3 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre