Articles liés à Multiscale Fatigue Crack Initiation and Propagation...

Multiscale Fatigue Crack Initiation and Propagation of Engineering Materials: Structural Integrity and Microstructural Worthiness: Fatigue Crack Growth Behaviour of Small and Large Bodies - Couverture souple

 
9789048178995: Multiscale Fatigue Crack Initiation and Propagation of Engineering Materials: Structural Integrity and Microstructural Worthiness: Fatigue Crack Growth Behaviour of Small and Large Bodies

Synopsis

What can be added to the fracture mechanics of metal fatigue that has not already been said since the 1900s? From the view point of the material and structure engineer, there are many aspects of failure by fatigue that are in need of attention, particularly when the size and time of the working components are changed by orders of magnitude from those considered by st traditional means. The 21 century marks an era of technology transition where structures are made larger and devices are made smaller, rendering the method of destructive testing unpractical. While health monitoring entered the field of science and engineering, the practitioners are discovering that the correlation between the signal and the location of interest depends on a priori knowledge of where failure may initiate. This information is not easy to find because the integrity of the physical system will change with time. Required is software that can self-adjust in time according to the monitored data. In this connection, effective application of health monitoring can use a predictive model of fatigue crack growth. Earlier fatigue crack growth models assumed functional dependence on the maximum stress and the size of the pre-existing crack or defect. Various possibilities were examined in the hope that the data could be grouped such that linear interpolation would apply.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Dr. George C. M. Sih
Visiting Professor of Mechanical Engineering
East China University of Science and Technology, Shanghai 200237, China
Visiting Professor of Institute of Mechanics
Chinese Academy of Sciences, Beijing 100080, China
and
Emeritus Professor of Mechanics and Director of the
Institute of Fracture and Solid Mechanics
Lehigh University, Bethlehem PA 18015, USA


Dr Sih is currently a Visiting Professor in the Department of Mechanical Engineering at the East China University of Science and Technology, Shanghai, China. He is also a Visiting Professor of the Institute of Mechanics at the Chinese Academy of Sciences in Beijing, China. He served as Director of the Institute of Fracture and Solid Mechanics at Lehigh University, Bethlehem PA. USA. Dr Sih received his B. S. at the University of Portland, Oregon, 1953; his M. S. at New York University, 1958; and his Ph.D. at Lehigh University, 1960, all of which are in Mechanical Engineering.
Dr. Sih served as Visiting Professor in USA, Europe and Asia. Among the universities are:
. Aeronautics at the California Institute of Technology, Pasadena, California,
USA
0 Hahnemann Medical College and Hospital of Philadelphia, PA, USA
. Mechanical and Aeronautical Engineering at University of Patras, Patras, Greece
Dr. Sih has also served as Consultants and Principle Investigators to the following companies and US government agencies:

Administration
In his earlier research works, Dr. Sih was involved with the development of high performance and design of materials by making use of the discipline of "Fracture Mechanics". He specializes in computer simulation of the mechanical behavior of structures and the aerodynamic stability of solids moving through fluid media. This includes the transonic-fiutter of airfoils; high speed projectile/target penetration; non-destructive testing methods, etc. His more recent activities are concerned with thetheories of nonequilibrium thermomechanics applied to scaling of size, time and temperature effects for nanomaterials. His more recent interest has been involved with
the aging of polymeric (and metallic) materials where chemical reactions would alter the structural arrangements of the molecules owing to specimen size, time and temperature effects. Much of his recent publications have been associated with "mesomechanics" in an attempt to understand how hetero-structures due to imperfections at the nano- and meso-scale would affect material behavior at the macroscopic scale.
Dr. Sih has organized more than 30 international conferences, published 8 books and more than 380 technical papers. He has memberships to many professional societies in addition to being the recipient of awards from technical societies.

Recent publications:
[1] G.C. Sih, Implication of scaling hierarchy associated with nonequilibrium:
field and particulate. Prospects ofmesomechanics in the 2Pt century, G.C. Sih and V.E. Panin, eds.. Special issue ofJ. ofTheoretical andApplied Fracture Mechanics, 37, (2002)
335-369.
[2] G.C. Sih, B. Liu (2002), Mesofracture mechanics: a necessary link, Prospects of mesomechanics in the 2ft century, G.C. Sih and V.E. Panin, eds., Special issue of of Theoretical and Applied Fracture Mechanics, 37, (2002) 37 1-395.
[3] G.C. Sih, A field model interpretation ofcrack initiation and growth behavior in ferrelectric ceramics: change of poling direction and boundary condition, J. of Theoretical and Applied Fracture Mechanics, 38(1) (2002) 1-14.
[4] G. C. Sih and E.P. Chen, Dilatational and distortional behavior of cracks in magnetoelectroelastic materials J. of Theoretical and Applied Fracture Mechanics, 39(3),
(2003) 1-21.
[5] G. C. Sih and S. T. Tu, Why, where and when it becomes necessary to consider chemical reaction effect in mechanics, in: G. C. Sih, S. T. Tu and Z. D. Wang, Fracture Mechanics and Applications: Structural Integrity and Aging, East China Univer. Sci. and Tech., Press (2003) 1-19
[6J G. C. Sih, Crack surface displacement trespassing the Rayleigh wave speed barrier as influenced by velocity and applied stress dependent local zone of restrain, J. of Theoretical and Applied Fracture Mechanics, 41, (2004) 185-231..
[7] G. C. Sih, Survive with the time o'clock of nature, G. C. Sih and LNobile, eds., Tipografia Moderna, Bologna, Italy (2004) 1-17.
[8] G. C. Sih, Mathematics needed for the development of mesomechanics:
complications associated with singularity, dimensionality and inhomogeneity, G.
C. Sih and C. P. Spyropoulos, eds., Eptalefos SA, Athens, Greece (2004) 1-22.
[9] G. C. Sih and X. S. Tang, Singularity representation of multiscale damage due to inhomogeneity with mesomechanics consideration, G. C. Sih, T. Kermanidis and Sp. Pantelakis, eds., Sarantidis Publications, Patras, Greece (2004) 1-15.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 255,73

Autre devise

EUR 11 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9781402085192: Multiscale Fatigue Crack Initiation and Propagation of Engineering Materials: Structural Integrity and Microstructural Worthiness: Fatigue Crack Growth Behaviour of Small and Large Bodies

Edition présentée

ISBN 10 :  1402085192 ISBN 13 :  9781402085192
Editeur : Springer-Verlag New York Inc., 2008
Couverture rigide

Résultats de recherche pour Multiscale Fatigue Crack Initiation and Propagation...

Image fournie par le vendeur

George C. Sih
ISBN 10 : 9048178991 ISBN 13 : 9789048178995
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -What can be added to the fracture mechanics of metal fatigue that has not already been said since the 1900s From the view point of the material and structure engineer, there are many aspects of failure by fatigue that are in need of attention, particularly when the size and time of the working components are changed by orders of magnitude from those considered by st traditional means. The 21 century marks an era of technology transition where structures are made larger and devices are made smaller, rendering the method of destructive testing unpractical. While health monitoring entered the field of science and engineering, the practitioners are discovering that the correlation between the signal and the location of interest depends on a priori knowledge of where failure may initiate. This information is not easy to find because the integrity of the physical system will change with time. Required is software that can self-adjust in time according to the monitored data. In this connection, effective application of health monitoring can use a predictive model of fatigue crack growth. Earlier fatigue crack growth models assumed functional dependence on the maximum stress and the size of the pre-existing crack or defect. Various possibilities were examined in the hope that the data could be grouped such that linear interpolation would apply. 396 pp. Englisch. N° de réf. du vendeur 9789048178995

Contacter le vendeur

Acheter neuf

EUR 255,73
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Sih, George C.
Edité par Springer Netherlands, 2010
ISBN 10 : 9048178991 ISBN 13 : 9789048178995
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Transition of micro-fatigue crack growth to the macro scaleMultiscale data representation by two-parameter fatigue crack growth relationMicrostructural cracking details identified with crack growth ratesEffects of micro-specimen dama. N° de réf. du vendeur 5821734

Contacter le vendeur

Acheter neuf

EUR 267,86
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Edité par Springer, 2010
ISBN 10 : 9048178991 ISBN 13 : 9789048178995
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9789048178995_new

Contacter le vendeur

Acheter neuf

EUR 318,12
Autre devise
Frais de port : EUR 4,67
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

George C. Sih
ISBN 10 : 9048178991 ISBN 13 : 9789048178995
Neuf Taschenbuch
impression à la demande

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -What can be added to the fracture mechanics of metal fatigue that has not already been said since the 1900s From the view point of the material and structure engineer, there are many aspects of failure by fatigue that are in need of attention, particularly when the size and time of the working components are changed by orders of magnitude from those considered by st traditional means. The 21 century marks an era of technology transition where structures are made larger and devices are made smaller, rendering the method of destructive testing unpractical. While health monitoring entered the field of science and engineering, the practitioners are discovering that the correlation between the signal and the location of interest depends on a priori knowledge of where failure may initiate. This information is not easy to find because the integrity of the physical system will change with time. Required is software that can self-adjust in time according to the monitored data. In this connection, effective application of health monitoring can use a predictive model of fatigue crack growth. Earlier fatigue crack growth models assumed functional dependence on the maximum stress and the size of the pre-existing crack or defect. Various possibilities were examined in the hope that the data could be grouped such that linear interpolation would apply.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 396 pp. Englisch. N° de réf. du vendeur 9789048178995

Contacter le vendeur

Acheter neuf

EUR 320,99
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

George C. Sih
ISBN 10 : 9048178991 ISBN 13 : 9789048178995
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - What can be added to the fracture mechanics of metal fatigue that has not already been said since the 1900s From the view point of the material and structure engineer, there are many aspects of failure by fatigue that are in need of attention, particularly when the size and time of the working components are changed by orders of magnitude from those considered by st traditional means. The 21 century marks an era of technology transition where structures are made larger and devices are made smaller, rendering the method of destructive testing unpractical. While health monitoring entered the field of science and engineering, the practitioners are discovering that the correlation between the signal and the location of interest depends on a priori knowledge of where failure may initiate. This information is not easy to find because the integrity of the physical system will change with time. Required is software that can self-adjust in time according to the monitored data. In this connection, effective application of health monitoring can use a predictive model of fatigue crack growth. Earlier fatigue crack growth models assumed functional dependence on the maximum stress and the size of the pre-existing crack or defect. Various possibilities were examined in the hope that the data could be grouped such that linear interpolation would apply. N° de réf. du vendeur 9789048178995

Contacter le vendeur

Acheter neuf

EUR 331,86
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier