Articles liés à Regression Analysis with Classical and Statistical...

Regression Analysis with Classical and Statistical Learning Methods: An Easy Guide for Data Scientists, Business Analysts and Engineers using Python - Couverture souple

 
9789348642516: Regression Analysis with Classical and Statistical Learning Methods: An Easy Guide for Data Scientists, Business Analysts and Engineers using Python
  • Date d'édition2025
  • ISBN 10 9348642510
  • ISBN 13 9789348642516
  • ReliureBroché
  • Langueanglais
  • Nombre de pages502

Résultats de recherche pour Regression Analysis with Classical and Statistical...

Image d'archives

James, K C
Edité par Academic Enclave, 2025
ISBN 10 : 9348642510 ISBN 13 : 9789348642516
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9789348642516

Contacter le vendeur

Acheter neuf

EUR 60,79
Autre devise
Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

K.C. James
Edité par Academic Enclave, 2025
ISBN 10 : 9348642510 ISBN 13 : 9789348642516
Neuf Paperback

Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9789348642516

Contacter le vendeur

Acheter neuf

EUR 65,51
Autre devise
Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

James, K C
ISBN 10 : 9348642510 ISBN 13 : 9789348642516
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9789348642516_new

Contacter le vendeur

Acheter neuf

EUR 61,04
Autre devise
Frais de port : EUR 14,21
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

K C James
Edité par Academic Enclave Mär 2025, 2025
ISBN 10 : 9348642510 ISBN 13 : 9789348642516
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 502 pp. Englisch. N° de réf. du vendeur 9789348642516

Contacter le vendeur

Acheter neuf

EUR 79,50
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

K.C. James
Edité par Academic Enclave, 2025
ISBN 10 : 9348642510 ISBN 13 : 9789348642516
Neuf Paperback

Vendeur : CitiRetail, Stevenage, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9789348642516

Contacter le vendeur

Acheter neuf

EUR 65,96
Autre devise
Frais de port : EUR 43,89
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

K C James
Edité par Academic Enclave, 2025
ISBN 10 : 9348642510 ISBN 13 : 9789348642516
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning. N° de réf. du vendeur 9789348642516

Contacter le vendeur

Acheter neuf

EUR 82,98
Autre devise
Frais de port : EUR 32,67
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier