Classical Groups Their Invariants And Representations by Weyl,H., 9789380250359, Hindustan
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 10,15 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 334. N° de réf. du vendeur 44773338
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 334 Index. N° de réf. du vendeur 2648009221
Quantité disponible : 1 disponible(s)
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
Etat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-172564
Quantité disponible : 2 disponible(s)
Vendeur : SMASS Sellers, IRVING, TX, Etats-Unis
Etat : New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. N° de réf. du vendeur ASNT3-172564
Quantité disponible : 2 disponible(s)
Vendeur : Vedams eBooks (P) Ltd, New Delhi, Inde
Soft cover. Etat : New. Etat de la jaquette : New. 1st Edition. Contents: 1.Introduction 2. Vector Invariants 3. Matric Algebras and Group Rings 4. The Symmetric Group and the Full Linear Group 5. The Orthogonal Group 6. The Symplectic Group 7. Characters 8. General Theory of Invariants 9. Matric Algebras Resumed. Supplements. Errata and Addenda Bibliography. Supplementary Bibliography. Index In this renowned volume, Hermann Weyl discusses the symmetric, full linear, orthogonal, and symplectic groups and determines their different invariants and representations. Using basic concepts from algebra, he examines the various properties of the groups. Analysis and topology are used wherever appropriate. The book also covers topics such as matrix algebras, semigroups, commutators, and spinors, which are of great importance in understanding the group-theoretic structure of quantum mechanics. N° de réf. du vendeur 110103
Quantité disponible : 1 disponible(s)