Covers Data Science concepts, processes, and the real-world hands-on use cases.
Key Features
● Covers the journey from a basic programmer to an effective Data Science developer.
● Applied use of Data Science native processes like CRISP-DM and Microsoft TDSP.
● Implementation of MLOps using Microsoft Azure DevOps.
Description
"How is the Data Science project to be implemented?" has never been more conceptually sounding, thanks to the work presented in this book. This book provides an in-depth look at the current state of the world's data and how Data Science plays a pivotal role in everything we do.
This book explains and implements the entire Data Science lifecycle using well-known data science processes like CRISP-DM and Microsoft TDSP. The book explains the significance of these processes in connection with the high failure rate of Data Science projects.
The book helps build a solid foundation in Data Science concepts and related frameworks. It teaches how to implement real-world use cases using data from the HMDA dataset. It explains Azure ML Service architecture, its capabilities, and implementation to the DS team, who will then be prepared to implement MLOps. The book also explains how to use Azure DevOps to make the process repeatable while we're at it.
By the end of this book, you will learn strong Python coding skills, gain a firm grasp of concepts such as feature engineering, create insightful visualizations and become acquainted with techniques for building machine learning models.
What you will learn
● Organize Data Science projects using CRISP-DM and Microsoft TDSP.
● Learn to acquire and explore data using Python visualizations.
● Get well versed with the implementation of data pre-processing and Feature Engineering.
● Understand algorithm selection, model development, and model evaluation.
● Hands-on with Azure ML Service, its architecture, and capabilities.
● Learn to use Azure ML SDK and MLOps for implementing real-world use cases.
Who this book is for
This book is intended for programmers who wish to pursue AI/ML development and build a solid conceptual foundation and familiarity with related processes and frameworks. Additionally, this book is an excellent resource for Software Architects and Managers involved in the design and delivery of Data Science-based solutions.
Table of Contents
1. Data Science for Business
2. Data Science Project Methodologies and Team Processes
3. Business Understanding and Its Data Landscape
4. Acquire, Explore, and Analyze Data
5. Pre-processing and Preparing Data
6. Developing a Machine Learning Model
7. Lap Around Azure ML Service
8. Deploying and Managing Models
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Nasir Ali Mirza is a Data Architect and Data Science Professional with over 20 years of experience in data technologies. He has designed and implemented large-scale data movement pipelines and data transformations for very large global organizations in the private and public sectors like Lehman Brothers, Caudwell Communications, Bell South, Museum of Science, Delaware State, Wells Fargo, Kennametal, and GEICO utilizing big data and analytics platforms. He is currently working as a Data Architect at Applied Information Sciences designing and implementing modern data analytics solutions. Before joining AIS, he served in the Database and BI practice at Microsoft Global Services. In this role, he architected data solutions for customers in the banking, insurance, and telecom industries.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Apr0412070048586
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9789391392871
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9789391392871
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur LU-9789391392871
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9789391392871_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9789391392871
Quantité disponible : 10 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Klappentext How is the Data Science project to be implemented? has never been more conceptually sounding, thanks to the work presented in this book. This book provides an in-depth look at the current state of the world s data and how Da. N° de réf. du vendeur 560090438
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves.com UK, London, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur LU-9789391392871
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - 'How is the Data Science project to be implemented ' has never been more conceptually sounding, thanks to the work presented in this book. This book provides an in-depth look at the current state of the world's data and how Data Science plays a pivotal role in everything we do.This book explains and implements the entire Data Science lifecycle using well-known data science processes like CRISP-DM and Microsoft TDSP. The book explains the significance of these processes in connection with the high failure rate of Data Science projects.The book helps build a solid foundation in Data Science concepts and related frameworks. It teaches how to implement real-world use cases using data from the HMDA dataset. It explains Azure ML Service architecture, its capabilities, and implementation to the DS team, who will then be prepared to implement MLOps. The book also explains how to use Azure DevOps to make the process repeatable while we're at it.By the end of this book, you will learn strong Python coding skills, gain a firm grasp of concepts such as feature engineering, create insightful visualizations and become acquainted with techniques for building machine learning models.TABLE OF CONTENTS1. Data Science for Business2. Data Science Project Methodologies and Team Processes3. Business Understanding and Its Data Landscape4. Acquire, Explore, and Analyze Data5. Pre-processing and Preparing Data6. Developing a Machine Learning Model7. Lap Around Azure ML Service8. Deploying and Managing Models. N° de réf. du vendeur 9789391392871
Quantité disponible : 1 disponible(s)