This self-contained monograph presents methods for the investigation of nonlinear variational problems. These methods are based on geometric and topological ideas such as topological index, degree of a mapping, Morse-Conley index, Euler characteristics, deformation invariant, homotopic invariant, and the Lusternik-Shnirelman category. Attention is also given to applications in optimisation, mathematical physics, control, and numerical methods.
Audience: This volume will be of interest to specialists in functional analysis and its applications, and can also be recommended as a text for graduate and postgraduate-level courses in these fields.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This self-contained monograph presents methods for the investigation of nonlinear variational problems. These methods are based on geometric and topological ideas such as topological index, degree of a mapping, Morse-Conley index, Euler characteristics, deformation invariant, homotopic invariant, and the Lusternik-Shnirelman category. Attention is also given to applications in optimisation, mathematical physics, control, and numerical methods.
Audience: This volume will be of interest to specialists in functional analysis and its applications, and can also be recommended as a text for graduate and postgraduate-level courses in these fields.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Apr0412070055804
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9789401059558_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Since the building of all the Universe is perfect and is cre ated by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maXImum or mInImUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on vari ational principles, i.e., it is postulated that equations describing the evolu tion of a system are the Euler~Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, La grange, and Weierstrass. 564 pp. Englisch. N° de réf. du vendeur 9789401059558
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Preface. 1. Preliminaries. 2. Minimization of Nonlinear Functionals. 3. Homotopic Methods in Variational Problems. 4. Topological Characteristics of Extremals of Variational Problems. 5. Applications. Bibliographical Comments. References. Index. . N° de réf. du vendeur 5832591
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 564. N° de réf. du vendeur 26126777696
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 564 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. N° de réf. du vendeur 133809855
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 564. N° de réf. du vendeur 18126777706
Quantité disponible : 4 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Geometrical Methods in Variational Problems | N. A. Bobylov (u. a.) | Taschenbuch | xvi | Englisch | 2012 | Springer | EAN 9789401059558 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. N° de réf. du vendeur 105565518
Quantité disponible : 5 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -1 Preliminaries.- 1.1 Metric and Normed Spaces.- 1.2 Compactness.- 1.3 Linear Functional and Dual Spaces.- 1.4 Linear Operators.- 1.5 Nonlinear Operators and Functionals.- 1.6 Contraction Mapping Principle, Implicit Function Theorem, and Differential Equations on a Banach Space.- 2 Minimization of Nonlinear Functionals.- 2.1 Extrema of Smooth Functionals.- 2.2 Extremum of Lipschitzian and Convex Functionals.- 2.3 Weierstass Theorems.- 2.4 Monotonicity.- 2.5 Variational Principles.- 2.6 Additional Remarks.- 3 Homotopic Methods in Variational Problems.- 3.1 Deformations of Functionals on Hilbert Spaces.- 3.2 Deformations of Functionals on Banach Spaces.- 3.3 Global Deformations of Functionals.- 3.4 Deformation of Problems of the Calculus of Variations.- 3.5 Deformations of Lipschitzian Functions.- 3.6 Global Deformations of Lipschitzian Functions.- 3.7 Deformations of Mathematical Programming Problems.- 3.8 Deformations of Lipschitzian Functionals.- 3.9 Additional Remarks.- 4 Topological Characteristics of Extremals of Variational Problems.- 4.1 Smooth Manifolds and Differential Forms.- 4.2 Degree of Mapping.- 4.3 Rotation of Vector Fields in Finite-Dimensional Spaces.- 4.4 Vector Fields in Infinite-Dimensional Spaces.- 4.5 Computation of the Topological Index.- 4.6 Topological Index of Zero of an Isolated Minimum.- 4.7 Euler Characteristic and the Topological Index of an Isolated Critical Set.- 4.8 Topological Index of Extremals of Problems of the Calculus of Variations.- 4.9 Topological Index of Optimal Controls.- 4.10 Topological Characteristic s of Critical Points of Nonsmooth Functionals.- 4.11 Additional Remarks.- 5 Applications.- 5.1 Existence Theorems.- 5.2 Bounds of the Number of Solutions to Variational Problems.- 5.3 Applications of the Homotopic Method.- 5.4 Study of Degenerate Extremals.- 5.5 Morse Lemmas.- 5.6 Well-Posedness of Variational Problems. Ulam Problem.- 5.7 Gradient Procedures.- 5.8 Bifurcation of Extremals of Variational Problems.- 5.9 Eigenvalues of Potential Operators.- 5.10 Additional Remarks.- Bibliographical Comments.- References.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 564 pp. Englisch. N° de réf. du vendeur 9789401059558
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Since the building of all the Universe is perfect and is cre ated by the wisdom Creator, nothing arises in the Universe in which one cannot see the sense of some maXImum or mInImUm Euler God moves the Universe along geometrical lines Plato Mathematical models of most closed physical systems are based on vari ational principles, i.e., it is postulated that equations describing the evolu tion of a system are the Euler~Lagrange equations of a certain functional. In this connection, variational methods are one of the basic tools for studying many problems of natural sciences. The first problems related to the search for extrema appeared as far back as in ancient mathematics. They go back to Archimedes, Appolonius, and Euclid. In many respects, the problems of seeking maxima and minima have stimulated the creation of differential calculus; the variational prin ciples of optics and mechanics, which were discovered in the seventeenth and eighteenth centuries, gave impetus to an intensive development of the calculus of variations. In one way or another, variational problems were of interest to such giants of natural sciences as Fermat, Newton, Descartes, Euler, Huygens, 1. Bernoulli, J. Bernoulli, Legendre, Jacobi, Kepler, La grange, and Weierstrass. N° de réf. du vendeur 9789401059558
Quantité disponible : 1 disponible(s)