This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations.
It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms.
The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded, Vandermonde, Toeplitz, and block Toeplitz systems. Part III addresses sparsematrix computations: (a) the development of parallel iterative linear system solvers with emphasis on scalable preconditioners, (b) parallel schemes for obtaining a few of the extreme eigenpairs or those contained in a given interval in the spectrum of a standard or generalized symmetric eigenvalue problem, and (c) parallel methods for computing a few of the extreme singular triplets. Part IV focuses on the development of parallel algorithms for matrix functions and special characteristics such as the matrix pseudospectrum and the determinant. The book also reviews the theoretical and practical background necessary when designing these algorithms and includes an extensive bibliography that will be useful to researchers and students alike.
The book brings together many existing algorithms for the fundamental matrix computations that have a proven track record of efficient implementation in terms of data locality and data transfer on state-of-the-art systems, as well as several algorithms that are presented for the first time, focusing on the opportunities for parallelism and algorithm robustness.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Efstratios Gallopoulos, University of Patras, Patras Greece
Bernard Philippe, INRIA/IRISA, Rennes Cedex, France
Ahmed H. Sameh, Purdue University, West Lafayette, IN, USA
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 29,90 expédition depuis Allemagne vers Etats-Unis
Destinations, frais et délaisEUR 3,43 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : SpringBooks, Berlin, Allemagne
Hardcover. Etat : As New. 1. Auflage. Unread, like new. Immediately dispatched from Germany. N° de réf. du vendeur CEN-2407C-CENKISTE11-18-1000
Quantité disponible : 1 disponible(s)
Vendeur : Salish Sea Books, Bellingham, WA, Etats-Unis
Hardcover. Etat : Fine. 9401771871 Like New; Hardcover; Close to new condition; Covers are still glossy with straight" edge-corners; Unblemished textblock edges; The endpapers and all text pages are bright and unmarked; Binding is tight with a straight spine; This book will be stored and delivered in a sturdy cardboard box with foam padding; Medium Format (8.5" - 9.75" tall); Blue and gray covers with title in blue lettering; 2015, Springer-Verlag Publishing; 473 pages; "Parallelism in Matrix Computations (Scientific Computation)," by Efstratios Gallopoulos, et al. N° de réf. du vendeur SKU-U28CE05302247
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Apr0412070060333
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 23787076-n
Quantité disponible : 15 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9789401771870_new
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9789401771870
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations.It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of parallel iterative linear system solvers with emphasis on scalable preconditioners, (b) parallel schemes for obtaining a few of the extreme eigenpairs or those contained in a given interval in the spectrum of a standard or generalized symmetric eigenvalue problem, and (c) parallel methods for computing a few of the extreme singular triplets. Part IV focuses on the development of parallel algorithms for matrix functions and special characteristics such as the matrix pseudospectrum and the determinant. The book also reviews the theoretical and practical background necessary when designing these algorithms and includes an extensive bibliography that will be useful to researchers and students alike. The book brings together many existing algorithms for the fundamental matrix computations that have a proven track record of efficient implementation in terms of data locality and data transfer on state-of-the-art systems, as well as several algorithms that are presented for the first time, focusing on the opportunities for parallelism and algorithm robustness. 504 pp. Englisch. N° de réf. du vendeur 9789401771870
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. N° de réf. du vendeur 31548546
Quantité disponible : Plus de 20 disponibles
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. From Pattern Formation to Material Computation Series: Scientific Computation. Num Pages: 503 pages, 58 black & white illustrations, biography. BIC Classification: PBF; PBKS; PBW; UYA. Category: (P) Professional & Vocational. Dimension: 235 x 155 x 27. Weight in Grams: 913. . 2015. Hardback. . . . . N° de réf. du vendeur V9789401771870
Quantité disponible : 15 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations.It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparsematrix computations: (a) the development of parallel iterative linear system solvers with emphasis on scalable preconditioners, (b) parallel schemes for obtaining a few of the extreme eigenpairs or those contained in a given interval in the spectrum of a standard or generalized symmetric eigenvalue problem, and (c) parallel methods for computing a few of the extreme singular triplets. Part IV focuses on the development of parallel algorithms for matrix functions and special characteristics such as the matrix pseudospectrum and the determinant. The book also reviews the theoretical and practical background necessary when designing these algorithms and includes an extensive bibliography that will be useful to researchers and students alike. The book brings together many existing algorithms for the fundamental matrix computations that have a proven track record of efficient implementation in terms of data locality and data transfer on state-of-the-art systems, as well as several algorithms that are presented for the first time, focusing on the opportunities for parallelism and algorithm robustness. From Pattern Formation to Material Computation Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9789401771870
Quantité disponible : 1 disponible(s)