This book discusses examples in parametric inference with R. Combining basic theory with modern approaches, it presents the latest developments and trends in statistical inference for students who do not have an advanced mathematical and statistical background. The topics discussed in the book are fundamental and common to many fields of statistical inference and thus serve as a point of departure for in-depth study. The book is divided into eight chapters: Chapter 1 provides an overview of topics on sufficiency and completeness, while Chapter 2 briefly discusses unbiased estimation. Chapter 3 focuses on the study of moments and maximum likelihood estimators, and Chapter 4 presents bounds for the variance. In Chapter 5, topics on consistent estimator are discussed. Chapter 6 discusses Bayes, while Chapter 7 studies some more powerful tests. Lastly, Chapter 8 examines unbiased and other tests.
Senior undergraduate and graduate students in statistics and mathematics, and thosewho have taken an introductory course in probability, will greatly benefit from this book. Students are expected to know matrix algebra, calculus, probability and distribution theory before beginning this course. Presenting a wealth of relevant solved and unsolved problems, the book offers an excellent tool for teachers and instructors who can assign homework problems from the exercises, and students will find the solved examples hugely beneficial in solving the exercise problems.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Ulhas Jayram Dixit is Professor, at the Department of Statistics, University of Mumbai, India. He is the first Rothamsted International Fellow at Rothamsted Experimental Station in the UK, which is the world's oldest statistics department. Further, he received the Sesqui Centennial Excellence Award in research and teaching from the University of Mumbai in 2008. He is member of the New Zealand Statistical Association, the Indian Society for Probability and Statistics, Bombay Mathematical Colloquium, and the Indian Association for Productivity, Quality and Reliability. Editor of Statistical Inference and Design of Experiment (published by Narosa), Prof. Dixit has published over 40 papers in several international journals of repute. His topics of interest are outliers, measure theory, distribution theory, estimation, elements of stochastic process, non-parametric inference, stochastic process, linear models, queuing and information theory, multivariate analysis, financial mathematics, statistical methods, design of experiments, and testing of hypothesis. He received his Ph.D. degree from the University of Mumbai in 1989.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Apr0412070081880
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9789811092763_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9789811092763
Quantité disponible : 10 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book discusses examples in parametric inference with R. Combining basic theory with modern approaches, it presents the latest developments and trends in statistical inference for students who do not have an advanced mathematical and statistical background. The topics discussed in the book are fundamental and common to many fields of statistical inference and thus serve as a point of departure for in-depth study. The book is divided into eight chapters: Chapter 1 provides an overview of topics on sufficiency and completeness, while Chapter 2 briefly discusses unbiased estimation. Chapter 3 focuses on the study of moments and maximum likelihood estimators, and Chapter 4 presents bounds for the variance. In Chapter 5, topics on consistent estimator are discussed. Chapter 6 discusses Bayes, while Chapter 7 studies some more powerful tests. Lastly, Chapter 8 examines unbiased and other tests. Senior undergraduate and graduate students in statistics and mathematics, and those who have taken an introductory course in probability, will greatly benefit from this book. Students are expected to know matrix algebra, calculus, probability and distribution theory before beginning this course. Presenting a wealth of relevant solved and unsolved problems, the book offers an excellent tool for teachers and instructors who can assign homework problems from the exercises, and students will find the solved examples hugely beneficial in solving the exercise problems. 484 pp. Englisch. N° de réf. du vendeur 9789811092763
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 423. N° de réf. du vendeur 26380894568
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 423. N° de réf. du vendeur 381960887
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 423. N° de réf. du vendeur 18380894562
Quantité disponible : 4 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Exclusively focuses on statistical inference Presents sophisticated mathematical proofs in a simple and easy-to-follow language Discusses fundamental topics common to many fields of statistical inference, and which offer a point of depar. N° de réf. du vendeur 449935416
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -This book discusses examples in parametric inference with R. Combining basic theory with modern approaches, it presents the latest developments and trends in statistical inference for students who do not have an advanced mathematical and statistical background. The topics discussed in the book are fundamental and common to many fields of statistical inference and thus serve as a point of departure for in-depth study. The book is divided into eight chapters: Chapter 1 provides an overview of topics on sufficiency and completeness, while Chapter 2 briefly discusses unbiased estimation. Chapter 3 focuses on the study of moments and maximum likelihood estimators, and Chapter 4 presents bounds for the variance. In Chapter 5, topics on consistent estimator are discussed. Chapter 6 discusses Bayes, while Chapter 7 studies some more powerful tests. Lastly, Chapter 8 examines unbiased and other tests.Senior undergraduate and graduate students in statistics and mathematics, and thosewho have taken an introductory course in probability, will greatly benefit from this book. Students are expected to know matrix algebra, calculus, probability and distribution theory before beginning this course. Presenting a wealth of relevant solved and unsolved problems, the book offers an excellent tool for teachers and instructors who can assign homework problems from the exercises, and students will find the solved examples hugely beneficial in solving the exercise problems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 484 pp. Englisch. N° de réf. du vendeur 9789811092763
Quantité disponible : 2 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Examples in Parametric Inference with R | Ulhas Jayram Dixit | Taschenbuch | lviii | Englisch | 2018 | Springer | EAN 9789811092763 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 113973282
Quantité disponible : 5 disponible(s)