This book on the teaching and learning of physics is intended for college-level instructors, but high school instructors might also find it very useful. Some ideas found in this book might be a small "tweak" to existing practices whereas others require more substantial revisions to instruction. The discussions of student learning herein are based on research evidence accumulated over decades from various fields, including cognitive psychology, educational psychology, the learning sciences, and discipline-based education research including physics education research. Likewise, the teaching suggestions are also based on research findings. As for any other scientific endeavor, physics education research is an empirical field where experiments are performed, data are analyzed and conclusions drawn. Evidence from such research is then used to inform physics teaching and learning. While the focus here is on introductory physics taken by most students when they are enrolled, however, the ideas can also be used to improve teaching and learning in both upper-division undergraduate physics courses, as well as graduate-level courses. Whether you are new to teaching physics or a seasoned veteran, various ideas and strategies presented in the book will be suitable for active consideration.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
<p><strong>José P Mestre</strong> is an emeritus Professor of Physics and Educational Psychology at the University of Illinois at Urbana-Champaign. Since earning his PhD in theoretical nuclear physics, his research has focused on the learning of physics, making many pioneering contributions in areas such as the acquisition and use of knowledge by experts and novices, transfer of learning, and problem solving. He was among the first to publish scholarly articles on the use of classroom polling technologies (clickers) to promote active learning in large classes, and is a co-developer of Minds-On Physics, an activity-based high school physics curriculum that is heavily informed by learning research. Most recently, his research has focused on applications of methodologies common in cognitive science (e.g., eye-tracking) to study learning and information processing by physics novices and experts. He has served on many national committees and boards for organizations such as the National Research Council, The College Board and Educational Testing Service and the American Association of Physics Teachers, and has offered Congressional testimony on The Science of Learning. He has published numerous research and review articles on science learning and teaching, and has co-authored or co-edited 19 books. Mestre served as Associate Dean at the University of Massachusetts-Amherst in the College of Natural Sciences and Mathematics, and both as Chair of the Department of Educational Psychology and as Associate Dean for Research at the College of Education at the University of Illinois-Urbana/Champaign. He is a Fellow of the American Physical Society with citation: "For ground-breaking applications of principles and methodologies from cognitive science to physics education research and for elucidating expert-novice performance differences in physics learning and problem solving."</p> <p> </p> <p><strong>Jennifer L Docktor</strong> is an Associate Professor of Physics at the University of Wisconsin-La Crosse. After completing a physics teacher preparation program at North Dakota State University she earned her M.S. in High Energy Physics and her PhD in Physics Education Research at the University of Minnesota. Her doctoral research focused on the Development and Validation of a Physics Problem-Solving Assessment Rubric. She spent two years as a postdoctoral fellow in Cognitive Science at the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urban-Champaign as part of a unique interdisciplinary research group on physics learning and cognition. She has collaborated with José on a variety of projects including conceptual problem solving in high school physics, categorization, and using eye-tracking technology to study physics representations. In 2010 they co-authored a commissioned paper for the National Academies report on Discipline-Based Education Research which was later published in Physical Review as the article Synthesis of Discipline-Based Education Research in Physics. In addition to these endeavors she is involved in several national efforts surrounding physics teacher preparation including the Physics Teacher Education Coalition (PhysTEC) and the project Get the Facts Out about STEM Teacher Recruitment. She has served on national committees for the American Association of Physics Teachers and currently serves as editor-in-chief for the <em>American Physical Society's Forum on Education</em> newsletter.</p>
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 42284820-n
Quantité disponible : 1 disponible(s)
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Science of Learning Physics, The: Cognitive Strategies for Improving Instruction. Book. N° de réf. du vendeur BBS-9789811227769
Quantité disponible : 5 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Apr0412070083258
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9789811227769
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Paperback. Etat : New. This book on the teaching and learning of physics is intended for college-level instructors, but high school instructors might also find it very useful.Some ideas found in this book might be a small 'tweak' to existing practices whereas others require more substantial revisions to instruction. The discussions of student learning herein are based on research evidence accumulated over decades from various fields, including cognitive psychology, educational psychology, the learning sciences, and discipline-based education research including physics education research. Likewise, the teaching suggestions are also based on research findings. As for any other scientific endeavor, physics education research is an empirical field where experiments are performed, data are analyzed and conclusions drawn. Evidence from such research is then used to inform physics teaching and learning.While the focus here is on introductory physics taken by most students when they are enrolled, however, the ideas can also be used to improve teaching and learning in both upper-division undergraduate physics courses, as well as graduate-level courses. Whether you are new to teaching physics or a seasoned veteran, various ideas and strategies presented in the book will be suitable for active consideration. N° de réf. du vendeur LU-9789811227769
Quantité disponible : 6 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 42284820
Quantité disponible : 1 disponible(s)
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur CX-9789811227769
Quantité disponible : 15 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur CX-9789811227769
Quantité disponible : 15 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 42284820-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9789811227769_new
Quantité disponible : Plus de 20 disponibles