Over the past two decades, the method of fundamental solutions (MFS) has attracted great attention and has been used extensively for the solution of scientific and engineering problems. The MFS is a boundary meshless collocation method which has evolved from the boundary element method. In it, the approximate solution is expressed as a linear combination of fundamental solutions of the operator in the governing partial differential equation.
One of the main attractions of the MFS is the simplicity with which it can be applied to the solution of boundary value problems in complex geometries in two and three dimensions. The method is also known by many different names in the literature such as the charge simulation method, the de-singularization method, the virtual boundary element method, etc.
Despite its effectiveness, the original version of the MFS is confined to solving boundary value problems governed by homogeneous partial differential equations. To address this limitation, we introduce various types of particular solutions to extend the method to solving general inhomogeneous boundary value problems employing the method of particular solutions.
This book consists of two parts. Part I aims to provide theoretical support for beginners. In the spirit of reproducible research and to facilitate the understanding of the method and its implementation, several MATLAB codes have been included in Part II.
This book is highly recommended for use by post-graduate researchers and graduate students in scientific computing and engineering.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 17,10 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 6,84 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9789811298479
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 48406444-n
Quantité disponible : 5 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 48406444
Quantité disponible : 5 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9789811298479_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 48406444-n
Quantité disponible : 5 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 48406444
Quantité disponible : 5 disponible(s)
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Hardcover. Etat : new. Hardcover. Over the past two decades, the method of fundamental solutions (MFS) has attracted great attention and has been used extensively for the solution of scientific and engineering problems. The MFS is a boundary meshless collocation method which has evolved from the boundary element method. In it, the approximate solution is expressed as a linear combination of fundamental solutions of the operator in the governing partial differential equation.One of the main attractions of the MFS is the simplicity with which it can be applied to the solution of boundary value problems in complex geometries in two and three dimensions. The method is also known by many different names in the literature such as the charge simulation method, the de-singularization method, the virtual boundary element method, etc.Despite its effectiveness, the original version of the MFS is confined to solving boundary value problems governed by homogeneous partial differential equations. To address this limitation, we introduce various types of particular solutions to extend the method to solving general inhomogeneous boundary value problems employing the method of particular solutions.This book consists of two parts. Part I aims to provide theoretical support for beginners. In the spirit of reproducible research and to facilitate the understanding of the method and its implementation, several MATLAB codes have been included in Part II.This book is highly recommended for use by post-graduate researchers and graduate students in scientific computing and engineering. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9789811298479
Quantité disponible : 1 disponible(s)
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
Hardback. Etat : New. Over the past two decades, the method of fundamental solutions (MFS) has attracted great attention and has been used extensively for the solution of scientific and engineering problems. The MFS is a boundary meshless collocation method which has evolved from the boundary element method. In it, the approximate solution is expressed as a linear combination of fundamental solutions of the operator in the governing partial differential equation.One of the main attractions of the MFS is the simplicity with which it can be applied to the solution of boundary value problems in complex geometries in two and three dimensions. The method is also known by many different names in the literature such as the charge simulation method, the de-singularization method, the virtual boundary element method, etc.Despite its effectiveness, the original version of the MFS is confined to solving boundary value problems governed by homogeneous partial differential equations. To address this limitation, we introduce various types of particular solutions to extend the method to solving general inhomogeneous boundary value problems employing the method of particular solutions.This book consists of two parts. Part I aims to provide theoretical support for beginners. In the spirit of reproducible research and to facilitate the understanding of the method and its implementation, several MATLAB codes have been included in Part II.This book is highly recommended for use by post-graduate researchers and graduate students in scientific computing and engineering. N° de réf. du vendeur LU-9789811298479
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis
Hardback. Etat : New. Over the past two decades, the method of fundamental solutions (MFS) has attracted great attention and has been used extensively for the solution of scientific and engineering problems. The MFS is a boundary meshless collocation method which has evolved from the boundary element method. In it, the approximate solution is expressed as a linear combination of fundamental solutions of the operator in the governing partial differential equation.One of the main attractions of the MFS is the simplicity with which it can be applied to the solution of boundary value problems in complex geometries in two and three dimensions. The method is also known by many different names in the literature such as the charge simulation method, the de-singularization method, the virtual boundary element method, etc.Despite its effectiveness, the original version of the MFS is confined to solving boundary value problems governed by homogeneous partial differential equations. To address this limitation, we introduce various types of particular solutions to extend the method to solving general inhomogeneous boundary value problems employing the method of particular solutions.This book consists of two parts. Part I aims to provide theoretical support for beginners. In the spirit of reproducible research and to facilitate the understanding of the method and its implementation, several MATLAB codes have been included in Part II.This book is highly recommended for use by post-graduate researchers and graduate students in scientific computing and engineering. N° de réf. du vendeur LU-9789811298479
Quantité disponible : Plus de 20 disponibles
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Hardcover. Etat : new. Hardcover. Over the past two decades, the method of fundamental solutions (MFS) has attracted great attention and has been used extensively for the solution of scientific and engineering problems. The MFS is a boundary meshless collocation method which has evolved from the boundary element method. In it, the approximate solution is expressed as a linear combination of fundamental solutions of the operator in the governing partial differential equation.One of the main attractions of the MFS is the simplicity with which it can be applied to the solution of boundary value problems in complex geometries in two and three dimensions. The method is also known by many different names in the literature such as the charge simulation method, the de-singularization method, the virtual boundary element method, etc.Despite its effectiveness, the original version of the MFS is confined to solving boundary value problems governed by homogeneous partial differential equations. To address this limitation, we introduce various types of particular solutions to extend the method to solving general inhomogeneous boundary value problems employing the method of particular solutions.This book consists of two parts. Part I aims to provide theoretical support for beginners. In the spirit of reproducible research and to facilitate the understanding of the method and its implementation, several MATLAB codes have been included in Part II.This book is highly recommended for use by post-graduate researchers and graduate students in scientific computing and engineering. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9789811298479
Quantité disponible : 1 disponible(s)