Introduction.- MARS methodology.- Simple MARS modeling examples.- MARS use in prediction of collapse potential for compacted soils.- MARS use in prediction of diaphragm wall deflections in soft clays.- MARS use in HP-pile drivability assessment.- MARS use in assessment of soil liquefaction.- MARS use in evaluating entry-type excavation stability.- Summary and conclusions.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dr. Wengang Zhang is a Professor at the School of Civil Engineering, and the founder and Director of the Green Eco-geotechnique Research Center, Chongqing University, China. He obtained his BSc and MSc degrees at Hohai University, China, and his Ph.D. degree at Nanyang Technological University, Singapore. He worked with Prof. Anthony Goh at NTU as a Project Officer, Research Student, Research Associate, and Research Fellow from 2009 to early 2016. He joined Chongqing University as a "Hundred Young Talent Researcher" in May 2016, and in 2017 he was awarded the "1000 Plan Professorship for Young Talents". His research interests include probabilistic assessment of underground cavern excavations, numerical modeling of deep braced excavation and reliability analysis, big data and machine learning methods in geotechnical engineering. He is currently a member of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) Technical Committees TC304 Reliability and TC309Machine Learning. Dr. Zhang is the leading Guest Editor of Geoscience Frontier's special issue Reliability of Geotechnical Infrastructures. Prof. Zhang's publications include "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", "Multivariate adaptive regression splines and neural network models for prediction of pile drivability", "Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines" and "An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines", which have received considerable attention from geotechnical academics and practitioners, as well as readers from interdisciplinary researchers.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Apr0412070086551
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26376029459
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 371097292
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. N° de réf. du vendeur 18376029465
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents the application of a comparatively simple nonparametric regression algorithm, known as the multivariate adaptive regression splines (MARS) surrogate model, which can be used to approximate the relationship between the inputs and outputs, and express that relationship mathematically. The book first describes the MARS algorithm, then highlights a number of geotechnical applications with multivariate big data sets to explore the approach's generalization capabilities and accuracy. As such, it offers a valuable resource for all geotechnical researchers, engineers, and general readers interested in big data analysis. 264 pp. Englisch. N° de réf. du vendeur 9789811374210
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents the nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) and its applications Introduces simple algorithms that are easy to interpret and deliver good computational efficien. N° de réf. du vendeur 275832453
Quantité disponible : Plus de 20 disponibles
Vendeur : preigu, Osnabrück, Allemagne
Buch. Etat : Neu. MARS Applications in Geotechnical Engineering Systems | Multi-Dimension with Big Data | Wengang Zhang | Buch | xxi | Englisch | 2019 | Springer Singapore | EAN 9789811374210 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 115523906
Quantité disponible : 5 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -This book presents the application of a comparatively simple nonparametric regression algorithm, known as the multivariate adaptive regression splines (MARS) surrogate model, which can be used to approximate the relationship between the inputs and outputs, and express that relationship mathematically. The book first describes the MARS algorithm, then highlights a number of geotechnical applications with multivariate big data sets to explore the approach¿s generalization capabilities and accuracy. As such, it offers a valuable resource for all geotechnical researchers, engineers, and general readers interested in big data analysis.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 264 pp. Englisch. N° de réf. du vendeur 9789811374210
Quantité disponible : 2 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 264 pages. 9.25x6.10x0.79 inches. In Stock. N° de réf. du vendeur x-981137421X
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents the application of a comparatively simple nonparametric regression algorithm, known as the multivariate adaptive regression splines (MARS) surrogate model, which can be used to approximate the relationship between the inputs and outputs, and express that relationship mathematically. The book first describes the MARS algorithm, then highlights a number of geotechnical applications with multivariate big data sets to explore the approach's generalization capabilities and accuracy. As such, it offers a valuable resource for all geotechnical researchers, engineers, and general readers interested in big data analysis. N° de réf. du vendeur 9789811374210
Quantité disponible : 1 disponible(s)