1 Oscillation-preserving integrators for highly oscillatory systems of second-order ODEs2 Continuous-stage ERKN integrators for second-order ODEs with highly oscillatory solutions3 Stability and convergence analysis of ERKN integrators for second-order ODEs with highly oscillatory solutions4 Functionally-fitted energy-preserving integrators for Poisson systems 5 Exponential collocation methods for conservative or dissipative systems 6 Volume-preserving exponential integrators 7 Global error bounds of one-stage explicit ERKN integrators for semilinear wave equations 8 Linearly-fitted conservative (dissipative) schemes for nonlinear wave equations9 Energy-preserving schemes for high-dimensional nonlinear KG equations 10 High-order symmetric Birkhoff-Hermite time integrators for semilinear KG equations 11 Symplectic approximations for efficiently solving semilinear KG equations12 Continuous-stage leap-frog schemes for semilinear Hamiltonian wave equations13 Semi-analytical ERKN integrators for solving high-dimensional nonlinear wave equations 14 Long-time momentum and actions behaviour of energy-preserving methods for wave equations
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Xinyuan Wu, a Professor in Department of Mathematics, Nanjing University. His research interests focus on geometric algorithms for differential equations, numerical methods for stiff problems and numerical methods for algebraic systems. In 2017, Wu was awarded with the highest distinction of "Honorary Fellowship" from European Society of Computational Methods in Science and Engineering for the outstanding contribution in the fields of Numerical Analysis and Applied Mathematics. Wu attended the school of Mathematics at the University of Tübingen for study and research from Janurary 19th 2002 to Janurary 20th 2003.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Apr0412070091084
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9789811601460_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The idea of structure-preserving algorithms appeared in the 1980's. The new paradigm brought many innovative changes. The new paradigm wanted to identify the long-time behaviour of the solutions or the existence of conservation laws or some other qualitative feature of the dynamics. Another area that has kept growing in importance within Geometric Numerical Integration is the study of highly-oscillatory problems: problems where the solutions are periodic or quasiperiodic and have to be studied in time intervals that include an extremely large number of periods. As is known, these equations cannot be solved efficiently using conventional methods. A further study of novel geometric integrators has become increasingly important in recent years. The objective of this monograph is to explore further geometric integrators for highly oscillatory problems that can be formulated as systems of ordinary and partial differential equations.Facing challenging scientific computational problems, this book presents some new perspectives of the subject matter based on theoretical derivations and mathematical analysis, and provides high-performance numerical simulations. In order to show the long-time numerical behaviour of the simulation, all the integrators presented in this monograph have been tested and verified on highly oscillatory systems from a wide range of applications in the field of science and engineering. They are more efficient than existing schemes in the literature for differential equations that have highly oscillatory solutions.This book is useful to researchers, teachers, students and engineers who are interested in Geometric Integrators and their long-time behaviour analysis for differential equations with highly oscillatory solutions. 520 pp. Englisch. N° de réf. du vendeur 9789811601460
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Establishes structure-preserving algorithms for differential equationsPresents theoretical derivations and mathematical analysisProvides high-performance numerical simulationsXinyuan Wu. N° de réf. du vendeur 440126648
Quantité disponible : Plus de 20 disponibles
Vendeur : preigu, Osnabrück, Allemagne
Buch. Etat : Neu. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions | Xinyuan Wu (u. a.) | Buch | xviii | Englisch | 2021 | Springer | EAN 9789811601460 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 119519724
Quantité disponible : 5 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -The idea of structure-preserving algorithms appeared in the 1980's. The new paradigm brought many innovative changes. The new paradigm wanted to identify the long-time behaviour of the solutions or the existence of conservation laws or some other qualitative feature of the dynamics. Another area that has kept growing in importance within Geometric Numerical Integration is the study of highly-oscillatory problems: problems where the solutions are periodic or quasiperiodic and have to be studied in time intervals that include an extremely large number of periods. As is known, these equations cannot be solved efficiently using conventional methods. A further study of novel geometric integrators has become increasingly important in recent years. The objective of this monograph is to explore further geometric integrators for highly oscillatory problems that can be formulated as systems of ordinary and partial differential equations.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 520 pp. Englisch. N° de réf. du vendeur 9789811601460
Quantité disponible : 2 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 517 pages. 9.25x6.10x1.38 inches. In Stock. N° de réf. du vendeur x-9811601461
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - The idea of structure-preserving algorithms appeared in the 1980's. The new paradigm brought many innovative changes. The new paradigm wanted to identify the long-time behaviour of the solutions or the existence of conservation laws or some other qualitative feature of the dynamics. Another area that has kept growing in importance within Geometric Numerical Integration is the study of highly-oscillatory problems: problems where the solutions are periodic or quasiperiodic and have to be studied in time intervals that include an extremely large number of periods. As is known, these equations cannot be solved efficiently using conventional methods. A further study of novel geometric integrators has become increasingly important in recent years. The objective of this monograph is to explore further geometric integrators for highly oscillatory problems that can be formulated as systems of ordinary and partial differential equations.Facing challenging scientific computational problems, this book presents some new perspectives of the subject matter based on theoretical derivations and mathematical analysis, and provides high-performance numerical simulations. In order to show the long-time numerical behaviour of the simulation, all the integrators presented in this monograph have been tested and verified on highly oscillatory systems from a wide range of applications in the field of science and engineering. They are more efficient than existing schemes in the literature for differential equations that have highly oscillatory solutions.This book is useful to researchers, teachers, students and engineers who are interested in Geometric Integrators and their long-time behaviour analysis for differential equations with highly oscillatory solutions. N° de réf. du vendeur 9789811601460
Quantité disponible : 1 disponible(s)