Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining.
This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic – the security of graph data mining – and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Qi Xuan is a Professor at the Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China. His current research interests include network science, graph data mining, cyberspace security, and deep learning. He has published more than 50 papers in leading journals and conferences, including IEEE TKDE, IEEE TIE, IEEE TNSE, ICSE, and FSE. He is the reviewer of the journals such like IEEE TKDE, IEEE TIE, IEEE TII, and IEEE TNSE.
Zhongyuan Ruan is a lecturer at the Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China. His current research interests include network science, such as epidemic and information spreading in complex networks, and traffic networks. He has published more than 20 papers in journals such as Physical Review Letters, Physical Review E, Chaos, Scientific Reports, and Physica A.
Yong Min is an Associate Professor at the Institute of Cyberspace Security, Zhejiang University ofTechnology, Hangzhou, China. His research interests include social network analysis, computational communication, and artificial intelligence algorithms. He was named an Excellent Young Teacher of Zhejiang University of Technology. He has hosted and participated in more than ten projects, including those by national and provincial natural science foundations. He has also published over 30 papers, including two in the leading journal Nature and Science, and he holds more than three patents.Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social . N° de réf. du vendeur 628808075
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9789811626111_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining. This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic - the security of graph data mining - and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains. 260 pp. Englisch. N° de réf. du vendeur 9789811626111
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining. This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic - the security of graph data mining - and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains. N° de réf. du vendeur 9789811626111
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining.This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic ¿ the security of graph data mining ¿ and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 260 pp. Englisch. N° de réf. du vendeur 9789811626111
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. 1st ed. 2021 edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26395176689
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 402281774
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18395176699
Quantité disponible : 4 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Apr0412070091972
Quantité disponible : Plus de 20 disponibles