Articles liés à Improving Classifier Generalization: Real-Time Machine...

Improving Classifier Generalization: Real-Time Machine Learning Based Applications - Couverture souple

 
9789811950759: Improving Classifier Generalization: Real-Time Machine Learning Based Applications
  • ÉditeurSpringer Verlag, Singapore
  • Date d'édition2023
  • ISBN 10 981195075X
  • ISBN 13 9789811950759
  • ReliureBroché
  • Langueanglais
  • Nombre de pages166

Acheter neuf

Afficher cet article
EUR 160,49

Autre devise

EUR 23 expédition depuis Allemagne vers Etats-Unis

Destinations, frais et délais

Autres éditions populaires du même titre

9789811950728: Improving Classifier Generalization: Real-time Machine Learning Based Applications

Edition présentée

ISBN 10 :  9811950725 ISBN 13 :  9789811950728
Editeur : Springer Verlag, Singapore, 2022
Couverture rigide

Résultats de recherche pour Improving Classifier Generalization: Real-Time Machine...

Image fournie par le vendeur

Nishchal K. Verma
ISBN 10 : 981195075X ISBN 13 : 9789811950759
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book elaborately discusses techniques commonly used to improve generalization performance in classification approaches. The contents highlight methods to improve classification performance in numerous case studies: ranging from datasets of UCI repository to predictive maintenance problems and cancer classification problems. The book specifically provides a detailed tutorial on how to approach time-series classification problems and discusses two real time case studies on condition monitoring. In addition to describing the various aspects a data scientist must consider before finalizing their approach to a classification problem and reviewing the state of the art for improving classification generalization performance, it also discusses in detail the authors own contributions to the field, including MVPC - a classifier with very low VC dimension, a graphical indices based framework for reliable predictive maintenance and a novel general-purpose membership functions for Fuzzy Support Vector Machine which provides state of the art performance with noisy datasets, and a novel scheme to introduce deep learning in Fuzzy Rule based classifiers (FRCs). This volume will serve as a useful reference for researchers and students working on machine learning, health monitoring, predictive maintenance, time-series analysis, gene-expression data classification. 192 pp. Englisch. N° de réf. du vendeur 9789811950759

Contacter le vendeur

Acheter neuf

EUR 160,49
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Sevakula, Rahul Kumar|Verma, Nishchal K.
ISBN 10 : 981195075X ISBN 13 : 9789811950759
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book elaborately discusses techniques commonly used to improve generalization performance in classification approaches. The contents highlight methods to improve classification performance in numerous case studies: ranging from datasets of UCI repos. N° de réf. du vendeur 1094389194

Contacter le vendeur

Acheter neuf

EUR 136,16
Autre devise
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Nishchal K. Verma
ISBN 10 : 981195075X ISBN 13 : 9789811950759
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book elaborately discusses techniques commonly used to improve generalization performance in classification approaches. The contents highlight methods to improve classification performance in numerous case studies: ranging from datasets of UCI repository to predictive maintenance problems and cancer classification problems. The book specifically provides a detailed tutorial on how to approach time-series classification problems and discusses two real time case studies on condition monitoring. In addition to describing the various aspects a data scientist must consider before finalizing their approach to a classification problem and reviewing the state of the art for improving classification generalization performance, it also discusses in detail the authors own contributions to the field, including MVPC - a classifier with very low VC dimension, a graphical indices based framework for reliable predictive maintenance and a novel general-purpose membership functions for Fuzzy Support Vector Machine which provides state of the art performance with noisy datasets, and a novel scheme to introduce deep learning in Fuzzy Rule based classifiers (FRCs). This volume will serve as a useful reference for researchers and students working on machine learning, health monitoring, predictive maintenance, time-series analysis, gene-expression data classification. N° de réf. du vendeur 9789811950759

Contacter le vendeur

Acheter neuf

EUR 162,91
Autre devise
Frais de port : EUR 29,67
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier