This volume is devoted to the study of hyperbolic free boundary problems possessing variational structure. Such problems can be used to model, among others, oscillatory motion of a droplet on a surface or bouncing of an elastic body against a rigid obstacle. In the case of the droplet, for example, the membrane surrounding the fluid in general forms a positive contact angle with the obstacle, and therefore the second derivative is only a measure at the contact free boundary set. We will show how to derive the mathematical problem for a few physical systems starting from the action functional, discuss the mathematical theory, and introduce methods for its numerical solution. The mathematical theory and numerical methods depart from the classical approaches in that they are based on semi-discretization in time, which facilitates the application of the modern theory of calculus of variations.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Seiro Omata was born in 1957 in Tokyo and received his Master and PhD degrees from Keio University. Since 1994 he has been working at Kanazawa University, becoming Full Professor in 2004. His research focuses on nonlinear evolutionary PDEs, including variational and free boundary problems, numerical analysis and applied analysis spanning numerous topics from fluid dynamics to mathematical finance. He devoted himself to the development of mathematics through the Mathematical Society of Japan, being invited as plenary speaker at its annual meeting in 2014 and serving as the chair of annual meeting in 2019.
Karel Svadlenka received his PhD in mathematics from Kanazawa University, Japan and from Charles University in Prague, Czech Republic, and has been an Associate Professor at the Department of Mathematics, Graduate School of Science, Kyoto University, Japan since 2014. His research interests include calculus variations, nonlinear partial differential equations, numerical analysis, and mathematical modeling.
Elliott Ginder is a Professor at Meiji University in the School of Interdisciplinary Mathematical Sciences. An Aries, he enjoys applied mathematics, especially topics involving interfacial motions, and the calculus of variations.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9789811967306_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9789811967306
Quantité disponible : 10 disponible(s)
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEOCT25-259982
Quantité disponible : 1 disponible(s)
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
Etat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-280036
Quantité disponible : 1 disponible(s)
Vendeur : ALLBOOKS1, Direk, SA, Australie
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. N° de réf. du vendeur SHAK259982
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9789811967306
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. 1st ed. 2022 edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26396345585
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 401112878
Quantité disponible : 4 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This volume is devoted to the study of hyperbolic free boundary problems possessing variational structure. Such problems can be used to model, among others, oscillatory motion of a droplet on a surface or bouncing of an elastic body against a rigid obstacle. In the case of the droplet, for example, the membrane surrounding the fluid in general forms a positive contact angle with the obstacle, and therefore the second derivative is only a measure at the contact free boundary set. We will show how to derive the mathematical problem for a few physical systems starting from the action functional, discuss the mathematical theory, and introduce methods for its numerical solution. The mathematical theory and numerical methods depart from the classical approaches in that they are based on semi-discretization in time, which facilitates the application of the modern theory of calculus of variations. 104 pp. Englisch. N° de réf. du vendeur 9789811967306
Quantité disponible : 2 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. N° de réf. du vendeur V9789811967306
Quantité disponible : 15 disponible(s)