Articles liés à Derivative-free Optimization: Theoretical Foundations,...

Derivative-free Optimization: Theoretical Foundations, Algorithms and Applications - Couverture rigide

 
9789819659289: Derivative-free Optimization: Theoretical Foundations, Algorithms and Applications

Synopsis

This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.

The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The book's structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.

Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Yang Yu is a professor at Nanjing University, specializing in artificial intelligence, machine learning, and optimization. His research focuses on derivative-free optimization, AutoML, and reinforcement learning. Prof. Yu has an extensive publication record in leading journals and conferences, including Artificial Intelligence, IEEE Transactions on Pattern Analysis and Machine Intelligence, ICML, NeurIPS, IJCAI, and AAAI. He is a co-author of the book Evolutionary Learning: Advances in Theories and Algorithms (Springer, 2019). His work has introduced foundational frameworks and algorithms in classification-based optimization, notably Racos and SRacos, and contributed to the development of the optimization toolbox ZOOpt, widely utilized in academic and industrial research.

Hong Qian is an associate professor at East China Normal University, with expertise in optimization algorithms, machine learning, and computational intelligence. His research focuses on developing scalable derivative-free optimization techniques for high-dimensional problems with theoretical guarantees, and LLM for optimization. Dr. Qian has published extensively in prominent venues such as ICML, NeurIPS, AAAI, and IEEE Transactions on Evolutionary Computation and has contributed to advancements in sampling-and-classification frameworks and their applications in machine learning and optimization tasks.

Yi-Qi Hu is an AI technical expert in Huawei Co. Ltd., with expertise in machine learning, optimization algorithms, and large language model on device. His work focuses on developing machine learning systems utilizing derivative-free optimization techniques. Dr. Hu has published extensively in prominent venues such as AAAI and IJCAI and has contributed to advancements in derivative-free optimization-based AutoML systems.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 195,09

Autre devise

EUR 17,01 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 160,49

Autre devise

EUR 11 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Derivative-free Optimization: Theoretical Foundations,...

Image fournie par le vendeur

Yang Yu
ISBN 10 : 9819659280 ISBN 13 : 9789819659289
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The book s structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material. 212 pp. Englisch. N° de réf. du vendeur 9789819659289

Contacter le vendeur

Acheter neuf

EUR 160,49
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Yang Yu
ISBN 10 : 9819659280 ISBN 13 : 9789819659289
Neuf Couverture rigide
impression à la demande

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 212 pp. Englisch. N° de réf. du vendeur 9789819659289

Contacter le vendeur

Acheter neuf

EUR 160,49
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Yang Yu
ISBN 10 : 9819659280 ISBN 13 : 9789819659289
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The book s structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material. N° de réf. du vendeur 9789819659289

Contacter le vendeur

Acheter neuf

EUR 168,73
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Yu, Yang; Qian, Hong; Hu, Yi-Qi
Edité par Springer, 2025
ISBN 10 : 9819659280 ISBN 13 : 9789819659289
Neuf Couverture rigide

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9789819659289

Contacter le vendeur

Acheter neuf

EUR 176,99
Autre devise
Frais de port : EUR 6,81
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Yu, Yang; Qian, Hong; Hu, Yi-qi
Edité par Springer, 2025
ISBN 10 : 9819659280 ISBN 13 : 9789819659289
Neuf Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 50543162-n

Contacter le vendeur

Acheter neuf

EUR 173,38
Autre devise
Frais de port : EUR 17,24
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Yu, Yang; Qian, Hong; Hu, Yi-qi
Edité par Springer, 2025
ISBN 10 : 9819659280 ISBN 13 : 9789819659289
Neuf Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 50543162-n

Contacter le vendeur

Acheter neuf

EUR 174,67
Autre devise
Frais de port : EUR 17,01
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Yang Yu
ISBN 10 : 9819659280 ISBN 13 : 9789819659289
Neuf Couverture rigide

Vendeur : CitiRetail, Stevenage, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The books structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material. mso-fareast-font-family: 'Times New Roman';">Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9789819659289

Contacter le vendeur

Acheter neuf

EUR 173,39
Autre devise
Frais de port : EUR 28,73
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Yu, Yang; Qian, Hong; Hu, Yi-qi
Edité par Springer, 2025
ISBN 10 : 9819659280 ISBN 13 : 9789819659289
Ancien ou d'occasion Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 50543162

Contacter le vendeur

Acheter D'occasion

EUR 195,09
Autre devise
Frais de port : EUR 17,01
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Yu, Yang; Qian, Hong; Hu, Yi-qi
Edité par Springer, 2025
ISBN 10 : 9819659280 ISBN 13 : 9789819659289
Ancien ou d'occasion Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 50543162

Contacter le vendeur

Acheter D'occasion

EUR 200,65
Autre devise
Frais de port : EUR 17,24
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Yang Yu
ISBN 10 : 9819659280 ISBN 13 : 9789819659289
Neuf Couverture rigide

Vendeur : AussieBookSeller, Truganina, VIC, Australie

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This book offers a pioneering exploration of classification-based derivative-free optimization (DFO), providing researchers and professionals in artificial intelligence, machine learning, AutoML, and optimization with a robust framework for addressing complex, large-scale problems where gradients are unavailable. By bridging theoretical foundations with practical implementations, it fills critical gaps in the field, making it an indispensable resource for both academic and industrial audiences.The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The books structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material. mso-fareast-font-family: 'Times New Roman';">Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9789819659289

Contacter le vendeur

Acheter neuf

EUR 197,12
Autre devise
Frais de port : EUR 31,48
De Australie vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 1 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre