This book provides an introduction to the mathematical theory of games using both classical methods and optimization theory. Employing a theorem-proof-example approach, the book emphasizes not only results in game theory, but also how to prove them. Part 1 of the book focuses on classical results in games, beginning with an introduction to probability theory by studying casino games and ending with Nash's proof of the existence of mixed strategy equilibria in general sum games. On the way, utility theory, game trees and the minimax theorem are covered with several examples. Part 2 introduces optimization theory and the Karush–Kuhn–Tucker conditions and illustrates how games can be rephrased as optimization problems, thus allowing Nash equilibria to be computed. Part 3 focuses on cooperative games. In this unique presentation, Nash bargaining is recast as a multi-criteria optimization problem and the results from linear programming and duality are revived to prove the classic Bondareva–Shapley theorem. Two appendices covering prerequisite materials are provided, and a "bonus" appendix with an introduction to evolutionary games allows an instructor to swap out some classical material for a modern, self-contained discussion of the replicator dynamics, the author's particular area of study.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 2,28 expédition vers Etats-Unis
Destinations, frais et délaisEUR 2,28 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 49930633-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. This book provides an introduction to the mathematical theory of games using both classical methods and optimization theory. Employing a theorem-proof-example approach, the book emphasizes not only results in game theory, but also how to prove them.Part 1 of the book focuses on classical results in games, beginning with an introduction to probability theory by studying casino games and ending with Nash's proof of the existence of mixed strategy equilibria in general sum games. On the way, utility theory, game trees and the minimax theorem are covered with several examples. Part 2 introduces optimization theory and the Karush-Kuhn-Tucker conditions and illustrates how games can be rephrased as optimization problems, thus allowing Nash equilibria to be computed. Part 3 focuses on cooperative games. In this unique presentation, Nash bargaining is recast as a multi-criteria optimization problem and the results from linear programming and duality are revived to prove the classic Bondareva-Shapley theorem. Two appendices covering prerequisite materials are provided, and a 'bonus' appendix with an introduction to evolutionary games allows an instructor to swap out some classical material for a modern, self-contained discussion of the replicator dynamics, the author's particular area of study. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9789819812875
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9789819812875
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 49930633
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
Paperback. Etat : New. This book provides an introduction to the mathematical theory of games using both classical methods and optimization theory. Employing a theorem-proof-example approach, the book emphasizes not only results in game theory, but also how to prove them.Part 1 of the book focuses on classical results in games, beginning with an introduction to probability theory by studying casino games and ending with Nash's proof of the existence of mixed strategy equilibria in general sum games. On the way, utility theory, game trees and the minimax theorem are covered with several examples. Part 2 introduces optimization theory and the Karush-Kuhn-Tucker conditions and illustrates how games can be rephrased as optimization problems, thus allowing Nash equilibria to be computed. Part 3 focuses on cooperative games. In this unique presentation, Nash bargaining is recast as a multi-criteria optimization problem and the results from linear programming and duality are revived to prove the classic Bondareva-Shapley theorem. Two appendices covering prerequisite materials are provided, and a 'bonus' appendix with an introduction to evolutionary games allows an instructor to swap out some classical material for a modern, self-contained discussion of the replicator dynamics, the author's particular area of study. N° de réf. du vendeur LU-9789819812875
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9789819812875_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Game Theory Explained: A Mathematical Introduction with Optimization. Book. N° de réf. du vendeur BBS-9789819812875
Quantité disponible : 5 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 49930633
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 49930633-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 308 pages. 3.94x3.94x2.36 inches. In Stock. N° de réf. du vendeur x-9819812879
Quantité disponible : 2 disponible(s)